論文 アセチレンを用いた真空浸炭法* Vacuum Carburizing Using Acetylene Gas 奥村望 Rozomu OKUMURA Atsushi IWASE

Vacuum Carburizing is vacuum process in which the carburizing gas is under a pressure of about 48kPa(360Torr) absolute. Usually Methane or Propane is used as the carburizing gas. This time, we examined the effect of Acetylene gas for high carbon potential carburizing and the carburizing homogeneity of a narrow hole inside. As the result, especially, higher carburizing homogeneity of a narrow hole inside was given using Acetylene gas. This presumed to be what is depended on direct reaction between iron and Acetylene due to absorption on to iron surface. Moreover, reduction of the sooting which was the conventional subject was attained by the vacuum carburizing using Acetylene.

Key Words: Vacuum Carburizing, Acetylene gas, High carbon potential, Carburizing homogeneity

1.はじめに

真空漫炭法は,従来から漫炭処理の量産法として広 く実施されているガス浸炭法と比較して,多くの優れ た特徴を有している.生産面においては,真空断熱に よる高温処理化によって,処理時間の短縮化が図れる こと,品質面においては,粒界酸化が少ないこと,細 穴内面の浸炭性が良好なこと,さらに環境面において は,二酸化炭素の発生がなく,断続運転が可能で省エ ネルギーが図れること,等である.

しかしながら,真空浸炭法は,特殊な用途以外には それ程普及していない.これには一般に広く展開され ているガス浸炭法にとって替わるだけの優位性が十分 に発揮されていないこと,すなわちいまだ解決すべき 課題が存在することを示している.真空浸炭法におけ る課題の一つに,煤の発生という問題がある.これは 浸炭ガスとして炉内に直接炭化水素系ガスを供給する ため,熱分解によって発生した多量の煤のメインテナ ンスが必要となり,操業面,コスト面でマイナス因子 となっている.

本報告は煤発生低減化を狙い,C₂H₂(アセチレン) ガスを用いた真空浸炭法による高濃度浸炭,細穴内面 の浸炭性とC₂H₂ガスによる浸炭反応につき考察を加 える.

2. **真空浸炭法の特徴**

真空浸炭炉の開発は,米国で行われた¹⁾.そのきっ *(社)日本熱処理技術会の了解を得て,協会誌 第38巻4 号(1998.8)より一部加筆して転載 かけは処理時間の短縮化を狙い,処理温度の高温化の 試みが各社で実施され,ガス浸炭炉では炉構造,処理 法を含め限界があることが明らかとなり,真空熱処理 炉が浸炭に利用できないかと研究されたのが始まりで ある.

米国における初期の真空浸炭法では,浸炭ガスとし てCH₄(メタン)ガスを用い,処理温度1040 ,処理 圧力も数kPa ~ 20kPa(数10 ~ 150Torr)の条件下で実 施されていた.その後,1974年ころから日本での設 備製造,販売が開始され現在に至っている.

真空漫炭法の主な特徴をまとめると以下のようである.

- (1) 高温短時間処理が可能
- (2) 変成炉が不要
- (3) **雰囲気管理が容易**
- (4) 粒界酸化がほとんどない
- (5) 高濃度浸炭が容易
- (6)細穴内面浸炭性が良好
- (7)間欠運転が可能
- 2.1 処理条件
- 2.1.1 浸炭温度

浸炭温度は高温処理による処理時間の短縮を目的と する場合,950 ~1040 の範囲で一般的には行われ るが細穴内面浸炭とか浸炭窒化を実施する場合には, 950 以下で行うこともある.高温浸炭を実施する場 合,浸炭温度の上昇につれて浸炭むらが発生しやすく 論 文

なるので浸炭条件の細部検討が必要となる.

2.1.2 処理時間

所用の漫炭深さを得るための処理時間は,漫炭時 間+拡散時間で表される.高温で長時間処理する場合 には結晶粒の粗大化が生ずるため拡散終了後,A₁変 態点以下までガス冷却して,再度加熱後焼入れする. 結晶粒の粗大化が生じない条件では,A₁変態点以下 までの冷却は不必要で,拡散終了後焼入温度まで炉冷 して焼入れする.後者の場合は浸炭温度と焼入温度の 差が大きく,炉冷時間が無視できない場合,拡散処理 終了後も炉冷時,焼入れ保持の間,炭素の拡散を生ず るので,拡散時間の補正が必要である.

2.1.3 浸炭深さ,表面炭素濃度

浸炭深さ,表面炭素濃度はHarrisの実験式²⁾を用いて求めることが可能である.

Harris の実験式

D = K t	(1)
$t = t_c + t_D$	(2)

$$t_c = t \left(\frac{C_1 - C_0}{C_2 - C_0} \right)^2$$
(3)

D : 浸炭深さ

- K:温度定数
- t : 全浸炭時間
- tc:浸炭時間
- t_。:拡散時間
- C:: 拡散後の表面炭素濃度
- C2: 浸炭後の表面炭素濃度
- C₀:素地の炭素濃度

carburizing time for Pattern

操業中の管理としては,浸炭時間,拡散時間の設定 により,浸炭深さ,表面炭素濃度を調整していること から上記(1)(2)(3)式を用いてチャートの作成例を次 に示す.

1)結晶の微細化処理を行わない場合(パターン)

- T₁:浸炭温度
- Tヶ: 焼入れ温度
- t₁(=t_c+t_p): 全漫炭時間
- t2: 焼入れ保持時間

t_m: *T*₁ から *T*₂ までの降温時間

*K*₁: *T*₁における温度定数

*K*₂: *T*₂における温度定数

K_m: T₁からT₂まで降温時の温度定数平均値 とすると各ステップでの浸炭深さは次のようになる.

温度 T_i における浸炭,拡散終了時の浸炭深さ D_i は, $D_i = K_i \sqrt{t_i}$ (4)

さらに,温度 T_1 から温度 T_2 まで降温したときの浸炭 深さ D_{1+m} は,

$$D_{1+m} = K_m \sqrt{\left(\frac{D_1}{K_m}\right)} + t_m \tag{5}$$

さらに, 焼入温度 T₂ にて保持終了後の漫炭深さ D_{total} は,

$$D_{total} = K_2 \sqrt{\left(\frac{D_{1+m}}{K_2}\right)^2 + t_2}$$
 (6)

で示される.以上の関係より浸炭温度1040 ,焼入 条件850 × 15分,1040 から850 までの降温時間 が30分の場合の浸炭深さ,表面炭素濃度を求めたも のがFig.1である.

2)結晶の微細化処理を行う場合(パターン)

この場合は炭素の拡散を補正する必要がないため,

Fig. 2 Relation between diffusion time and carburizing time for Pattern

Harrisの実験式から単純に求められる.Fig.2は浸炭 温度1040 の場合のチャート例である.

今回は,浸炭ガスとしてC₂H₂ガスを用いた場合の 高濃度浸炭と細穴内面浸炭技術について報告する.

2.2 高濃度浸炭

高濃度浸炭とは,材料表面近傍の炭素濃度を高め, 炭化物を析出させる処理である.高濃度浸炭により硬 さの向上が図れるため,耐摩耗性,耐焼付性の改善に 効果が期待される.高濃度浸炭の方法については,い くつかの提案がなされている³⁾が,真空浸炭技術を用 いれば比較的容易に達成できる.

高濃度浸炭においては,炭化物の析出状態を制御す ることが重要であり,粒界に網状析出すればかえって 強度低下の原因となる.また炭素濃度が高くなれば, 残留オーステナイトも発生しやすくなり,注意を要す る.炭化物の大きさ・形状・分布に注意して,条件設 定することが必要である.

浸炭ガスとしてC₂H₂ガスを用い高濃度浸炭した組 織をFig.3に示す.処理パターンをFig.4に示すが, Acm 濃度近くまで浸炭後,ガス冷却によりArt 以下ま で急冷し,再度加熱浸炭,冷却を繰り返した.加熱冷 却を繰り返すことにより,炭化物は粒界に網状に析出 することなく,微細化されほぼ均一に析出した状態と なっている.表面硬さは,通常の浸炭に比較し,ビッ カース硬度で100~200程度の増加が認められた.

高濃度浸炭については,前述した効果が期待される が,炭素濃度,炭化物の析出状態と特性についてこの 定量的把握が十分になされていないと思われるため, 材料面・処理技術面を含め今後の検討が必要と思われ る.

Fig. 3 Structure of high carbon potential carburizing

2.3 細穴内面浸炭

真空漫炭法における細穴内面の漫炭性については, 既に筆者は漫炭ガスとしてC₃H(プロパン)·N₂(窒素) 混合ガスを用いその均一性を報告している⁴⁾. C₃H₈ + N₂ガスを用いた場合,炉内を一定圧力にて処 理するより,パルス的に炉内圧力を変動させる方式の 方が細穴内外の漫炭均一性が良好であった.N₂ガス

の添加は,煤発生の低減化を狙ったものであり,パル ス的な圧力変動は,ガスの撹拌効果を狙ったものであ る.

Fig.5はC₂H₂ガスを浸炭ガスとして,前回^{4,3}と同様 のサンプル(5×55)を用い真空浸炭処理を実施した 結果を示す.処理条件は,浸炭温度900,焼入温度 850,処理圧力130Pa(1.0Torr)の定圧処理である. C₂H₂ガスを用いた場合,パルス方式を用いることな く,極低圧力で細穴内面の均一性が得られる結果を示 した.真空浸炭法における浸炭ガスとしては,従来 CH₄ガスおよびC₃H₈ガスが使用されているが,極低 圧下においては,炉内ガス撹拌が不十分となり浸炭む らが発生しやすい.

Fig. 5 Carburizing homogeneity of a narrow hole inside by using acetylene

3.C2H2ガスの浸炭メカニズムについて

真空浸炭におけるC₂H₂ガスの浸炭メカニズムを考察するため,浸炭ガスとして飽和炭化水素である C₃H₈ガス,不飽和炭化水素で二重結合を有するC₂H₄ (エチレン)ガス,三重結合を有するC₂H₂ガスの3種 類を選び,浸炭時,未浸炭時のガス分解挙動を計測し た.

3.1 実験方法

Fig.6は四重極質量分析計の概略図であり,ガス分 析の計測条件を以下に示す.

真空チャンバ内圧力

```
: ガス導入時圧力 13Pa(0.1Torr)
```

温度: 930

真空チャンパ容積: 0.5m³

Fig. 6 Quadrupole mass spectrometer

3.2 ガスの分解挙動

Fig.7, Fig.8, Fig.9は加熱温度930 におけるチャ ンパ内に鋼を入れない場合の C_3H_8 ガス, C_2H_4 ガス, C_2H_2 ガスの熱分解挙動を示したものである. C_3H_8 ガ スにおいては,時間の経過に伴い C_3H_8 が減少し, H_2 の増加, C_2H_4 , CH_4 (微量で分離できなかったため, nとして表記: $n=1 \sim 4$)の生成が認められる₂.

 $C_2 H_4$ ガスにおいては, $C_2 H_4$ の減少に伴い, $C_3 H_8$ と同様, H_2 の増加, CH_n の生成が認められる. $C_2 H_4$ の分解速度は $C_3 H_8$ に比較して速い. $C_2 H_2$ ガスにおい ては, $C_3 H_8$, $C_2 H_4$ ガスと異なる挙動を示す. $C_2 H_2$ の 急激な分解に伴い, H_2 , $C_2 H_4$ の増加および CH_n の生 成が認められる. すなわち $C_3 H_8$ ガスでは, $C_3 H_8$ $C_2 H_4$ CH_n と高級炭化水素から低級炭化水素へと分 解が進むと考えられる. 同様に $C_2 H_4$ ガスでも $C_2 H_4$ CH_n へと移行する. $C_2 H_2$ ガスにおいては, $C_2 H_2$ $C_2 H_4$, $C_2 H_2$ CH_n , または $C_2 H_2$ $C_2 H_4$ CH_n に移 行するものと思われる.

Fig.10, Fig.11, Fig.12はチャンパ内に鋼を入れた 場合の C_3H_8 ガス, C_2H_4 ガス, C_2H_2 ガスの浸炭時の 分解挙動を示す. C_3H_8 ガス, C_2H_4 ガスの挙動は,熱 分解挙動と類似しているが,分解速度の増加と,CH_n の発生が減少していることが異なる.このことはそれ ぞれ鋼の触媒作用およびCH_nが浸炭により消費されて いるためと考えられる. C_2H_2 ガスの場合は熱分解挙 動と大きく異なり,急激な C_2H_2 の減少, H_2 の増加が 認められ, C_2H_4 , CH_n成分は検出されない.

これらの結果より、 C_3H_8 ガス、 C_2H_4 ガスにおける 浸炭は、 CH_n 成分が主体であり、 C_2H_2 ガスにおいて は、鋼表面への吸着による C_2H_2 ガス直接の反応、す なわち C_2H_2 2C[Fe]+H₂の反応に従うものと推測さ れる.さらに C_2H_2 は三重結合を持つ不飽和炭化水素 で化学反応性に富み、金属あるいは金属化合物との反 応により、金属の誘導体である金属アセチリドを生じ る.従って、鋼との反応によりセメンタイト(Fe₃C) 等の化合物が生成しやすいことも考えられる.

Fig. 7 Thermal resolution behavior of propane

Fig. 10 Carburizing resolution behavior of propane

Fig. 8 Thermal resolution behavior of ethylene

Fig. 9 Thermal resolution behavior of acetylene

Fig. 11 Carburizing resolution behavior of ethylene

Fig. 12 Carburizing resolution behavior of acetylene

Fig.13はC₂H₂ガスを用い,930 × 30分の浸炭後 拡散をしないで放冷処理を行った場合のセメンタイト 析出状態を示したものである.またFig.14はC₃H₈ガ スを用い930 × 30分の浸炭後拡散をしないで放冷処 理を行った組織である.

C₃H₈ガスでは粒界に沿ってセメンタイトの析出が 観測されるが, C₂H₂では表面に多量のセメンタイト が形成されている.930 × 60秒の処理によっても最 表面にセメンタイトが観察された報告もなされている⁵⁾. 以上のことから真空浸炭の浸炭ガスとしてC₂H₂ガス の効果は吸着による細穴内面の浸炭性への寄与,鋼と の直接反応による高濃度浸炭あるいは炭化物の生成と 思われるが,これらについては,今後さらに詳細な検 討を要す.

Fig. 13 Carburized structure using acetylene

Fig. 14 Carburized structure using propane

4. おわりに

C₂H₂ガスを用いた真空浸炭法においての高濃度浸炭,細穴内面の浸炭性および浸炭ガスの分解挙動につき報告したが,これまでの真空浸炭のイメージ,すなわち多量の煤発生については,大きな成果が得られた. さらに極低圧下において均一な浸炭が可能であることもこれまでの飽和炭化水素系ガスでは得られなかった結果である.

浸炭メカニズムについては、さらに詳細な研究を必要とするが、C2H2ガスの鋼に対しての吸着現象が大きな意味を持っていると考えられる.しかしながらC2H2ガス使用については課題が無いわけではない. それは鋼との直接反応が原因と思われるセメンタイト生成のしやすさである.この点に関しては、浸炭・拡散の比などの検討を加え最適化を図る必要がある.またC2H2ガスは従来から使用されている飽和炭化水素系ガスと特性が異なるので、取扱いに対しては異なった注意が必要である.

謝辞

本研究の遂行にあたり,実験装置等の便宜を図って 頂いた(株)日本ヘイズ殿に感謝の意を表します.

<参考文献>

- 1) H.W.Western : Metal Prog., 102,Oct., 101(1972)
- 2) F.H.Harris: Metal Prog., 44, 265(1943), 45,683(1944) 5) 杉山道生:熱処理, 37, 3, p.158(1997)
- 3) O.E.Cullen: Patent, NO.610, 554, Canadian(1974)
- 4) 奥村 望: 熱処理, 24, 5, p.280(1984) 5) 杉山道生: 熱処理, 37, 3, p.158(1997)

ゆゆゆゆゆゆゆゆゆゆゆゆゆゆゆゆゆゆゆゆゆゆゆゆゆゆゆ

<著 者>

奥村 望 (おくむら のぞむ)

材料技術部 表面処理技術(めっき,塗装,熱処 理等)関連の研究開発に従事.

岩瀬 厚司 (いわせあつし)

材料技術部 熱処理・表面改質の研究開発に従 事.