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Monocular gaze estimation is usually performed by locating the pupils, and the inner and outer eye corners in the

image of the driver’s head. Of these feature points, the eye corners are just as important, and perhaps harder to

detect, than the pupils. The eye corners are usually found using local feature detectors and trackers. In this paper,

we describe a monocular driver gaze tracking system which uses a global head model, specifically an Active

Appearance Model (AAM), to track the whole head. From the AAM, the eye corners, eye region, and head pose are

robustly extracted and then used to estimate the gaze.
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１．INTRODUCTION

An intelligent car that monitors the behavior of the driver

can be made far safer. Many of the most important

components of the driver’s behavior are related to their eye

gaze. Whether the driver is drowsy or not is related to both

their blink rate and their temporal gaze variation. Whether

they are distracted or not can often be determined from

detecting whether they are looking outside into the road

scene, or instead at other passengers, the car radio, etc. By

combining eye gaze with an understanding of the objects in

the road-scene, it is even possible for an intelligent car to

determine whether the driver has noticed potential dangers

in the scene.

Most passive approaches to gaze estimation are in

essence very similar. See, for example, 3)-5), 7), 9), 10).

The location of the pupil (or equivalently the iris), together

with the inner and outer corners of the eye, are detected in

the input image(s). The eye gaze can then be computed

using a simple geometric head model. If an estimate of the

head pose is available, a more refined geometric model can

be used and a more accurate gaze estimate made.

Of these four quantities (iris/pupil location, inner eye

corner location, outer eye corner location, and head pose),

the most difficult to estimate reliably are the eye corners

(and to a lesser extent the head pose.) Once the eye corners

have been located, locating the iris/pupil, both robustly and

accurately, is relatively straightforward. Perhaps somewhat

ironically, the main difficulty in gaze estimation is not

finding the iris/pupil.

The usual approach to locating the inner and outer eye

corners is feature point detection and tracking.4) 5) The head

pose is normally computed in a similar manner; i. e. first

detect and track a collection of anatomical feature points

(eye corners, nose, etc) and then use a simple geometric

model to compute the head pose. The problem with all of

these feature-based methods is that they are very local; they

only use information in the immediate vicinity of the

feature point. If the face was tracked as a single object, a lot

more visual information could be used to detect and track

the eye corners and estimate the head pose, both more

robustly and more accurately.

In recent years, a number of face models have been

proposed to model the face as a single object, most notably

Active Appearance Models (AAMs)2) and 3D Morphable

Models (3DMMs).1) Unfortunately, AAMs are only 2D

models and so estimating the 3D head pose is difficult. On

the other hand, fitting or tracking with 3D models is

relatively slow. In particular, the fastest algorithm8) to track

with a 3DMM operates at around 30 seconds per frame (i. e.

almost 1000 times slower than real-time, by which we

mean 30 frames per second).

Recently, we have developed real-time algorithms for

fitting both 2D AAMs6) and a 3D variant of them.11) Both of

these algorithms operate at well over 200 frames per

second, leaving plenty of time for the other computational

tasks, such as iris/pupil detection, and the estimation of the

gaze direction itself. In this paper, we describe how we

have used these algorithms to build a gaze estimation

system that derives its robustness and high accuracy from

the fact that the eye corners and head pose are estimated
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using the entire appearance of the face, rather than by just

tracking a few isolated feature points.

２．GAZE ESTIMATION GEOMETRIC MODEL

We begin by describing the geometric head model we

use to estimate the gaze direction. There is nothing

particularly novel about this model. Similar models have

been used by other authors.4)5) The essence of our model is

contained in Fig. 1. We assume that the eyeball is spherical

and that the inner and outer eye corners have been

estimated, in our case using an AAM as described in the

following section. Our algorithm can be split into two steps:

1. Estimate (1) the center and (2) the radius of the eyeball

in the image from the eye corners and the head pose.

2. Estimate the gaze direction from the pupil location, the

center and radius of the eyeball.

The first of these steps requires the following anatomical

constants, also shown in Fig. 1 (b): 

• R0: The radius of the eyeball in the image when the

“scale” of the face is 1 (see below for a definition of

scale).

• (Tx, Ty): The offset in the image (when the face is

frontal and the “scale” is 1) between the mid-point of

the two eye corners and the center of the eyeball.

• L: The depth of the center of the eyeball relative to the

plane containing the eye corners.

We now describe these two steps in turn and then how to

estimate the anatomical constants.

2.1 Estimating the center and radius of the eyeball

The center and radius of the eyeball are computed using

the following three steps:

1.  The mid-point (mx, my) between the inner corner (e1x,

e1y) and outer corner (e2x, e2y) is computed:

(1)

2.  The scale of the face S is computed. The most obvious

way to estimate the scale is to use the foreshorten-

corrected distance between the eye corners:

(2)

Fig. 1   Gaze Estimation Geometric Model (a) In the image we detect the pupil and the eye corners (using the AAM.)
From these quantities we first estimate the eyeball center and radius, and then the gaze. (b) The anatomical
constants (R

0 
, L, Tx, Ty ) when the scale of face is 1. (c) Top down view used to compute the offsets to the

eye center from the head pose φx when the scale of face is S. (d) Top down view used to compute the gaze
direction θx when the scale of face is S.
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The disadvantage of this approach is that it is very

noise sensitive because it is the difference between

two points that are very close together in the image.

Instead, we used the scale that is estimated by the

AAM. This estimate is more reliable because the

scale is computed by effectively averaging over the

entire face region.

3.  The center of the eyeball (ox, oy) is then computed

as the mid-point (mx, my) plus two corrections:

.  (3)

The first correction is a foreshortened offset that

compensates for the fact that the mid-point of the eye

corners is not necessarily the eye center even for a frontal

image. The second correction compensates for the fact that

the eyeball center does not, in general, lie in the plane of

the eye corners. In Equation (3), (φx, φy) is the head pose.

4.  The radius of the eyeball in the image is computed R =

SR0

2.2 Estimating the gaze direction

The gaze direction (θx, θy) can then be computed as

follows (see Fig. 1(d)):

(4)

2.3 Training the anatomical constants

The anatomical constants R0, (Tx, Ty) and L are pre-

computed in an offline training phase as follows.

Substituting Equation (4) gives:

(5)

We collect a set of training samples where the gaze

direction and head pose of a person takes one of the two

following special forms:

and:

Suppose we have Nx images of the first form and Ny of

the second, we combine the equations for these training

samples and create the following matrix equation:

(6)

The least squares solution of this equation gives (R0,
L, Tx, Ty).

３．DRIVER GAZE ESTIMATION WITH AN

ACTIVE APPEARANCE MODEL

The usual approach to locating the inner and outer eye

corners is feature point detection and tracking.4 5) The

problem with these feature-based methods is that they are

very local; they only use information in the immediate

vicinity of the feature. Hence, feature point tracking is

neither as robust nor as accurate as it could be. We now

describe an approach that tracks the head as a single object

and show how it can be used to: (1) estimate the head pose,

(2) estimate the eye corner locations, and (4) extract the

region for pupil localization.

3.1 Active appearance models

Active Appearance Models (AAMs)2) are generative face

models. An AAM consists of two components, the shape and

the appearance. The 2D shape of an AAM is defined by a 2D

triangulated mesh and in particular the vertex locations of

the mesh:

.                           (7)
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AAMs allow linear shape variation. This means that the

shape matrix s can be expressed as a base shape s0 plus a

linear combination of m shape matrices si:

(8)

where the coefficients pi are the shape parameters. AAMs

are normally computed from training data consisting of a

set of images with the shape mesh (usually hand) marked

on them.2) The Iterative Procrustes Algorithm and Principal

Component Analysis are then applied to compute the the

base shape s0 and the shape variations si. An example of the

base shape s0 and the first two shape models (s1 and s2) of an

AAM are shown in Fig. 2(a)-(c).

The appearance of the AAM is defined within the base

mesh s0. Let s0 also denote the set of pixels u = (u, v)T that

lie inside the base mesh s0, a convenient abuse of terminology.

The appearance of the AAM is then an image A(u) defined

the pixels u ∈ s0. AAMs allow linear appearance variation.

This means that the appearance A(u) can be expressed as a

base appearance A0 (u) plus a linear combination of l

appearance images Ai (u):

(9)

where λi are the appearance parameters. As with the shape,

the appearance images Ai are usually computed by applying

PCA to the (shape normalized) training images.2) An

example of the base λ0 and first two appearance modes (λ1

and λ2) are shown in Fig. 2(d)-(f).

Although Equations (8) and (9) describe the AAM shape

and appearance variation, they do not describe how to

generate a model instance. The AAM model instance with

shape parameters p and appearance parameters λi is created

by warping the appearance A from the base mesh s0 to the

model shape mesh s. In particular, the pair of meshes s0 and

s define a piecewise affine warp from s0 to s which we denote

W(u; p). Three example model instances are included in

Fig. 2(g)-(i). This figure demonstrate the generative power

of an AAM. The AAM can generate face images with

different poses (Fig. 2(g) and (h)), different identities

(Fig. 2(g) and (i)), and different expression, (Fig. 2(h) and

(i)).

s = s0 + pi siΣ
m

i=1

A (u) = A0 (u) + λ Ai (u)Σ
l

i=1
i

Fig. 2   An example Active Appearance Model.2) (a-c) The AAM base shape s0 and the first two shape modes s1 and s2.
(d-f) The AAM base appearance λ0 and the first two shape modes λ1 and λ2. (g-i) Three model instances. (j-l)
The base 3D shape s̄0 and the first two 3D shape modes s̄1 and s̄2.

(a) Base shape s0 (b) 2D shape mode s1 (c) 2D shape mode s2

(d) Base appearance λ0 (e) Appearance mode λ1 (f) Appearance mode λ2

(g) Example model instance (h) Example model instance (i) Example instance

(j) 3D base shape s0 (k) 3D shape mode s1 (l) 3D shape mode s2
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3.2 Real-time driver head tracking with an AAM

Driver head tracking is performed by “fitting” the AAM

sequentially to each frame in the input video. Three frames

from an example movie of a driver’s head being tracked

with an AAM are included in Fig. 3. Given an input image

I, the goal of AAM fitting is to minimize:

(10)

simultaneously with respect to the 2D AAM shape pi and

appearance λi parameters. In 6) we proposed an algorithm

to minimize the expression in Equation (10) that operates at

around 230 frames per second. For lack of space, the reader

is referred to 6) for the details.

3.3 Estimating driver head pose with an AAM

The shape component of an AAM is 2D which makes

driver head pose estimation difficult. In order to extract the

head pose, we also build a 3D linear shape model:

(11)

where the coefficients p̄i are the 3D shape parameters and s̄,

etc, are the 3D shape coordinates:

(12)

In 11) we showed how the equivalent 3D shape variation

s̄i can be computed from the corresponding 2D shape

variation si using our non-rigid structure-from-motion

algorithm.12) An example of the 3D base shape s̄0 and the 

first to 3D shape modes (s̄1 and s̄2) of the AAM in Fig. 2 are

shown in Fig. 2(j)-(l). In order to combine this 3D model

with the 2D model we need an image formation model. We

use the weak perspective imaging model defined by:

(13)

where (a, b) is an offset to the origin and the projection

axes i = (ix, iy, iz) and j = ( jx, jy, jz) are equal length and

orthogonal: i • i = j • j; i • j = 0. To extract the driver head

pose and AAM scale we perform the AAM fitting by

minimizing:

(14)

simultaneously with respect to pi, λi, P, and p̄i, rather than

using Equation (10). In Equation (14), K is a large constant

weight. In 11) we extended our 2D AAM fitting algorithm6)

to minimize the expression in Equation (14). The algorithm

operates at around 286Hz.11) The second term enforces the

(heavily weighted soft) constraints that 2D shape s equals

the projection of the 3D shape s̄ with projection matrix P.

Once the expression in Equation (14) has been minimized,

the driver head pose and AAM scale can be extracted from

the projection matrix P. Two examples of pose estimation

are shown in Fig. 4.

Fig. 3   Example driver head tracking results with an AAM. View in color for the best clarity.
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3.3 Eye corner tracking and eye region extraction

Once the AAM has been fit to an input video frame, it is

easy to locate the eye corners and extract the eye regions. The

AAM has mesh vertices that correspond to each of the inner

and outer eye corners. The eye corner location in the images

can therefore be just read out of W (s; p), the location of the

AAM mesh in the images. See Fig. 5(a) for an example.

In the AAM, each eye is modeled by six mesh vertices. It is

therefore also easy to extract the eye region as a box slightly

larger than the bounding box of the six eye mesh vertices. If

(xi, yi) denotes the six mesh vertices for i = 1, . . . , 6, the eye

region is the rectangle with bottom-left coordinate (BLx,

BLy) and top-right coordinate (TRx, TRy), where:

(15)

and (cx, dy) is an offset to expand the rectangle. Again, see

Fig. 5(a) for an example.

3.4 Iris detection

Once the eye region has been extracted from the AAM,

we detect the iris to locate the center of the iris. Our iris

detector is fairly conventional and consists of two parts.

Initially template matching with a disk shaped template is

used to approximately locate the iris. The iris location is

then refined using an ellipse fitting algorithm similar to the

ones in 7), 10).

3.4.1 Template matching

We apply template matching twice to each of the eye

regions using two different templates. The first template is

a black disk template which is matched against the intensity

image. The second template is a ring (annulus) template

that is matched against the vertical edge image. The radius

of both templates are determined from the scale of the

AAM fit. The two sets of matching scores are summed to

give a combined template matching confidence. The

position of the pixel with the best confidence becomes the

initial estimate of the center of the iris. In Fig. 5(b) we

overlay the eye image with this initial estimate of the iris

location and radius.

Fig. 4   Pose estimation results. The computed roll, pitch, and yaw are displayed in the top left.

Fig. 5   Example iris detection result: (a) Example eye region extraction results computed from an AAM fit. (b) The
initial iris location and radius computed by template matching. (c) The refined iris location and radius after
edge-based ellipse fitting.

(a) Eye region extraction (b) Initial iris estimate (c) Refined iris estimate

= ( )min xi
max xi

min yi

max yi

+ ( )- cx
 cx

- dy

 dy
( )BLx

TRx

BLy

TRy

特　　集



－106－

3.4.2 Edge-based iris refinement

The initial iris estimate is then refined as follows. First,

edges are detected by scanning radially from the initial

center of the pupil outward. Next, an ellipse is fit to the

detected edges to refine the estimate of the iris center.

Edges a long way away from the initial estimate of the

radius are filtering out for robustness. The ellipse is

parameterized:

(16)

and the parameters a1, . . . , a5 are fit using lease squares.

This refinement procedure is repeated iteratively until the

estimate of the center of the iris converges (typically only

2-3 iterations are required). Example results are shown in

Fig. 5(c).

４．QUANTITATIVE EVALUATION IN THE

LABORATORY

4.1 Eye corner tracking, pose and scale

estimation

In Fig. 6 we include three frames of a head being tracked

using an AAM. Notice how the facial features are tracked

accurately across wide variations in the head pose. In Fig. 7

we include three example pose estimates using the 3D

AAM. Note that the yaw is estimated particularly accurately.

Besides the eye corner locations and the head pose, the

other quantity we extract from the AAM fit is the head

scale S. We ecaluate the scale estimate using the fact that

the scale is inversely proportional to the distance to the

head (the depth.) In Fig. 8 we compute the distance to the

head using the scale as the driver slides the seat back.

4.2 Gaze estimation

We collected a ground-truthed dataset by asking each

subject to look in turn at a collection of markers on the

wall. The 3D position of these markers was then measured

relative to the head position and the ground-truth gaze

angles computed. We took multiple sequences with

different head poses. All variation was in the yaw direction

and from approximately -20 degrees to +20 degrees relative

to frontal. In Fig. 9 (a-c) we include an example frontal

images for each of 3 subjects. We overlay the image with

the AAM fit and a line denoting the estimated gaze

direction. We also include close ups of the extracted eye

regions and the detected iris. In Fig. 9 (d-e) we plot the

estimated azimuth gaze angle against the ground truth. The

average error is 3.2 degrees. The green line in the figure

denotes the “correct answer”.

a1x2 + a2xy + a3y2 + a4x + a5y = 1

Fig. 6   An example of head tracking with an AAM.

Fig. 7   Example pose (yew, pitch, roll) estimation with the AAM.

(a) Ground truth (20, 0, 0)
Result value (20, -1.8, -3.6)

(b) Ground truth (10, 0, 0)
Result value (10, 2.0, -4.3)

(c) Ground truth (0, 0, 0)
Result value (0.8, -1.8, -0.8)
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５．QUALITATIVE EVALUATION IN A REAL CAR

If there are two cameras in the car, one imaging the

driver, the other imaging the outside world, it is possible to

calibrate the relative orientations of the camera by asking a

person to look at a collection of points in the world and

then marking the corresponding points in the outside-view

image. The relative orientation can then be solved using

least-squares. We performed this experiment and then

asked the subject to track a person walking outside the car

with their gaze. Three frames from a video of the results are

shown in Fig. 10. In Fig. 10 (a-c) we display the exterior

view. We overlay the estimated gaze direction with a

yellow circle than corresponds to a 5.0 degree gaze radius.

In Fig. 10 (d-e) we include the corresponding interior view

of the driver overlaid with the AAM, the extracted eye

regions, the detected iris, and the estimated gaze plotted as

a line. As can be seen, the person always lies well inside the

circle, demonstrating the high accuracy of our algorithm.

Fig. 8   Verification of the scale estimated by the AAM. Since the scale is inversely proportional to depth, we can use
the scale to estimate the distance to the driver's head. (a-h) The distance estimated from the AAM scale
increases smoothly as the seat is moved backward.

(a) Depth:64.7cm (b) Depth:67.4cm (c) Depth:71.3cm (d) Depth:74.0cm

(e) Depth:75.7cm (f) Depth:77.5cm (g) Depth:78.7cm (h) Depth:80.1cm

Fig. 9   Gaze estimation. (a-c) Gaze estimates overlaid on the input image. We also include the AAM, the extracted
eye region, and the detected iris. (d-f) A comparison between the ground-truth azimuth gaze angle and the
angle estimated by our algorithm. The average error is 3.2 degrees.

(a) Gaze of subject 1 (b) Gaze of subject 2 (c) Gaze of subject 3

(d) Azimuth of subject 1 (e) Azimuth of subject 2 (f) Azimuth of subject 3
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６．CONCLUSION

We have presented a driver gaze estimation algorithm

that uses an Active Appearance Model 2) to: (1) track the

eye corners, (2) extract the eye region, (3) estimate the

scale of the face, and (4) estimate the head pose. The irises

are detected in the eye region using fairly standard

techniques and the gaze estimated from the above

information using a fairly standard geometric model. The

robustness and accuracy of our passive, monocular system

are derived from the AAM tracking of the whole head,

rather than using a local feature based technique. Once the

eye corners have been located, finding the irises and

computing the gaze are straightforward.
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