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This paper presents a pedestrian detection system based on the fusion of sensors for LIDAR and convolutional

neural network based image classification. By using LIDAR our method achieves a processing speed of over 10

frames/second. The focus of this paper is the evaluation of the effects of fusing the two systems compared to the

image-only system. The evaluation results indicate that fusing the LIDAR and image classifier can reduce the

number of false positives by a factor of 2 and reduce the processing time by a factor of 4. The single frame detection

accuracy of the system is above 90% when there is 1 false positive/s.
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１．INTRODUCTION

More than 3000 pedestrians are killed each year in traffic

accidents in Japan. There has been a great deal of interest in

recent years in the development of pedestrian detection

systems that could help reduce the number and impact of

these accidents. Most of the proposed systems use a camera

as the sensor, because cameras can provide the high

resolution needed for accurate classification and position

measurement.

The disadvantage of image-only detection systems is the

high computational cost associated with classifying a large

number of candidate image regions. Accordingly, it has

been a trend for several years to use a hierarchical detection

structure combining different sensors. In the first step low

computational cost sensors identify a small number of

candidate regions of interest (ROI).

２．OVERVIEW OF RELATED WORK

The structure of the pedestrian detection systems

described in the literature can roughly be divided into

region of interest (ROI) detection, feature extraction,

candidate classification and tracking. In this section we give

a brief overview of the solutions for ROI detection and

classification modules in the literature.

2.1 Region of interest (ROI) detection

The purpose of region of interest (ROI) detection is to

select a small number of candidate regions in the image that

may contain a pedestrian. Frequently used methods include

the use of the (relaxed) flat world model, the use of

specialized sensors, and the use of a hierarchy of

increasingly complex classifiers.

The flat world model makes use of the fact that

pedestrians of interest are located on the ground and the

image region corresponding to the ground can be computed

from the camera geometry. This assumption is too

restrictive in practice, because neither the road is

completely flat, nor the parameters of the camera are

known accurately due to the varying pitch and roll of the

camera during driving.

Specialized sensors include stereo vision followed by a

clustering, hot-spot detection in far infrared images and

laser based detection. The high cost of the sensor is,

however, common for these methods. In contrast with these

high-cost sensors we propose to use a low-cost automatic

cruise control (ACC) LIDAR that is available in cars on the

market for almost a decade.

2.2 Classification

The key component of any detection system is the

classifier that makes the final decision. The most popular

classifier is the support vector machine (SVM) due to its

high generalization ability. Other classifiers include neural

networks, boosted combination of linear classifiers and

template matching. The common point of these classifiers is

that they treat the feature extraction and classification

problem independently.

The convolutional neural network (CNN) classifier
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proposed by LeCun,1) on the other hand, treats the feature

extractor as part of the classifier itself. The feature

extraction filters are implemented as a hidden layer with

shared weights that are optimized together with the

classification component. Since the resulting features are

tuned to the detection target the classification accuracy is

higher than with generic features. Our choice of classifier

is, therefore, the CNN extended with the large margin idea

of SVM-s.2)

３．SYSTEM DESCRIPTION

Our detection system can be divided to a LIDAR-based

ROI detection module and a convolutional neural network

(CNN) based classification module followed by post-

processing modules for merging multiple detections and 3

dimensional location estimation (see Fig. 1).

3.1 Sensor specifications

Our detection system is relying on a LIDAR sensor for

ROI detection and a CCD camera for classifier input. The

detailed specifications of the LIDAR are displayed in

Table 1.

The camera is a CCD Toshiba IK-M44H model. The

specifications of the camera are displayed in Table 2. The

original output of the camera is an interlaced 30 frame/sec

NTSC signal but only one in every 3 frames is retained

during digitalization.

3.2 Region of interest (ROI) detection

The region of interest (ROI) detector in our system

receives the signal from the LIDAR sensor and outputs a

list of boxes in 3 dimensional (3D) world-coordinates. The

3D ROI-boxes are obtained by clustering the LIDAR

measurements. Each 3D box is projected to the image plane

using the intrinsic and extrinsic camera parameters. In real

life, however, the extrinsic parameters of the camera are

varying due to the pitching of the car. Therefore it is

desirable to include a tolerance range for the camera

parameters. We call this extended model the relaxed flat

world model.

3.3 Convolutional neural network-based

classification

In this section we give an overview of the convolutional

neural network-based classification module.

Convolutional Neural Networks1) are a special variant of

multilayer perceptrons (MLP) in which the first layers are

configured to act as a hierarchical feature extractor. The

difference to the usual fully connected MLP is that each

processing node in the feature extracting layers (also called

“feature maps”) is connected to a different subrectangle of

the preceding layer and processing nodes in each feature

map share the same weight vector. The last layers of the

CNN are fully connected, implementing a general purpose

classifier over the features extracted by the earlier layers.

The structure and intermediate processing results of the

CNN used in our experiments are shown in Fig. 2. The size

Fig. 1   The block-diagram of our pedestrian detection system
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Table 1   Specification of LIDAR parameters

FOV (Field of view) Horizontal 36° (451 directions)
Vertical

Vertical

7.125° (6 planes)
Horizontal 0.08° 

1.425° 
Directional resolution

Distance resolution 0.01 m
Update rate 100 ms (10Hz)

Table 2   Specification of camera parameters

Type
Sensor

Toshiba IK-M44H

Vertical

Color CCD
Horizontal

Vertical
Horizontal

Vertical
Horizontal

640 pixel
480 pixel

46.2° 
35.5° 
7.5 mm
8 bits/color
100 ms (10 frames/s)

Resolution

Pixel size

Focal length

Frame rate
Intensity resolution

FOV (Field of view)

0.01 mm/pixel
0.01 mm/pixel



－47－

of the input layer is 30 × 60 pixels. The height of the

pedestrian in the input image is 40 pixels during training.

The relatively large margin of 10 pixels at the top and

bottom are needed in order to compensate for boundary

effects. There are 6 feature maps in both the first and

second level. Each second-level feature map is connected to

exactly one first-level feature map. The size of the hidden

layer, fully connected to all level 2 feature maps, is 5 units.

We trained the CNN with the cross-entropy error

function using the stochastic-gradient based training

algorithm. In order to avoid overtraining the network we

applied the large-margin training method described in2).

3.4 Detection merging

The CNN classifier will give several hits for the same

pedestrian. In applications it is desirable to have a single

result per pedestrian therefore we perform a multiple

detection merging on the raw CNN detections. The multiple

detection merging operation is using the algorithm

described in 4).

3.5 Position estimation

The final step of the detection process is the estimation

of the pedestrian’s position relative to the car. We are using

a world coordinate system with the positive x axis pointing

to the right, the positive y axis pointing upwards and the

negative z axis pointing towards the driving direction of the

car. The origin is at the center of the front bumper of the car

with y=0 being the height of the road. We are assuming

that the pedestrian is standing on the road with y=0, while x

and z are estimated by inverse perspective projection of the

center of the lower edge of the detected bounding box,

assuming a flat road.

４．EVALUATION OF DETECTION

4.1 CNN training conditions

The CNN classifier was trained using a large number of

30 × 60 pixel images containing either a pedestrian

(“positive samples”) or a background image (“negative

samples”). Both the positive and negative samples were

collected using a camera mounted on the roof of a car.

The negative samples were automatically generated

using the bootstrap method of Sung and Poggio.3) Two

hundred input images that contain no pedestrians were used

in the bootsrap procedure. The size of the different data sets

is displayed in Table 3.

4.2 Evaluation data

The evaluation data set comprises 10 video recordings,

10 seconds long each. In order to ensure complete

independence of the test data from the training data we

recorded the two data sets on different days and in a

different city. The resolution of the test images is 640 × 480

pixels.

4.3 Evaluation method

During evaluation we computed a semi-correct world

coordinate for each reference bounding box using the

inverse perspective procedure. A detection result was
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Fig. 2   The structure and intermediate processing
results of the convolutional neural network

Convolution kernel
(5x5)

Candidate image
(30x60) 40 pixels

Feature
extraction

Classsification
(MLP*)

Classsification result

Trainable
coefficients

Hidden layer
(5 units)

Output layer
(1 unit)

*MLP: Multilayer perception

Convolution kernel
(5x5)

Subsamplated
Feature mapq

(13x28)

Subsamplated
Feature mapw

(9x12)

Table 3   The size of different datasets

Date set
Training data (30x60)
Test data (30x60)

Positive samples
37,592

Negative samples
60,000

1000 images, includes both positive and negative regions
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considered correct if the difference between the estimated

and reference z coordinates was smaller than 20% of the

reference z coordinate of the pedestrian. The tolerance for

the x coordinate was fixed at 40 cm. Based on this criterion

we computed the ROC curve by changing the detection

threshold between the minimum and maximum value.

4.4 Evaluation results

The evaluation has been conducted using 6 different

settings for the search procedure. The resulting ROC curves

are displayed in Fig. 3 and the associated processing times

are displayed in Fig. 4.

In the first 3 experiments we used only the input from the

camera and did not use the LIDAR-based ROI detector. We

evaluated 3 different settings for the search region. In the

baseline setting we conducted a full search of the input

image evaluating all possible subrectangles. In the second

setting we used a relaxed flat-world model, permitting a ± 3˚

deviation from the nominal value of the camera pitch. The

third setting was using the most restrictive flat-world

model.

The second set of 3 experiments used both the camera

and the LIDAR input. In the basic setting we used only the

horizontal information from the LIDAR ROI-boxes. In the

second setting we used both the horizontal and the distance

information and computed the permitted feet positions

using the relaxed flat-world model with a ± 3˚ tolerance. In

the final setting we computed the feet position using the

flat-world model.

The relaxed flat world model reduced the computation

time by a factor of 3 and the flat world model reduced it by

a factor of 6. The use of the LIDAR information reduced

the processing time by an additional factor of 4 compared

to the equivalent image-only setting. The LIDAR-based

object detection method also reduced the number of false

positives by about a factor of 2 compared to the image-only

recognition.

Figure 5 illustrates the reduction of false positives due

to the LIDAR-based ROI detector. 

Green rectangles in the top Fig. 5(a.) indicate false

positives that were detected by the image-only system.

Since there were no LIDAR reflections at the distance

corresponding to these false positives, they were eliminated

in the combined system (bottom, Fig. 5( b.))

５．CONCLUSION

In this paper we introduced a real-time pedestrian

detection system utilizing a LIDAR-based object detector

and a convolutional neural network-based image classifier.

The evaluation results indicate that utilizing the LIDAR

information can reduce the amount of false positives by a

factor of 2 and reduce the processing time by a factor of 4.

We also evaluated the effect of perspective information on

classifier performance. The results indicate that using the

Fig. 3   The ROC curve of the pedestrian detection
system with and without the use of LIDAR-
based ROI detection
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Fig. 4   Average processing time of the pedestrian
detection system with and without the use
of LIDAR-based ROI detection
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flat-world model can reduce processing time by about a

factor of 6, but it does not give optimal accuracy. The

relaxed flat-world model gives a smaller improvement of

processing time but it gives higher accuracy.

The proposed system can process real-life video

sequences with over 10 frames/second speed on a desktop

workstation. The single frame accuracy is 90% detection

with less than 1 false positives per second.

Our future work includes integration of a tracking

module to improve the detection accuracy and reducing the

computation load so that the current frame-rate can be

realized in embedded environments.
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Fig. 5   Illustration of the reduction of false positives due to the use of LIDAR

a. Image only b. LIDAR and image combination


