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特集 Prediction of Driver Operations inside Vehicles＊
伊 藤 隆 文            金 出 武 雄
Takafumi ITO              Takeo KANADE

Recently, developments of various intelligent vehicles have been performed by installing sophisticated systems 
with the aim of safety and comfort. In order to realize more sophisticated systems harmonized with drivers, it will 
be important for the systems to recognize and adapt to the driver’s situation or operation. In this paper, we propose 
a new method for predicting typical driver operations, which are performed by vehicle drivers, such as “pushing 
navigation buttons”, “adjusting the rear-view mirror”, or “opening the console box”, before the fingers of the 
drivers actually reach the target position. The prediction method used a camera to capture images of anatomical 
landmarks (shoulders, elbows, and wrists) when they moved over time. The difference in the configurations of 
various operations was modeled using a combination of clustering and discriminant analysis. The proposed method 
was applied to predict the nine most frequently executed operations inside a vehicle, running at over 150 frames 
per second. The proposed system achieved an average prediction accuracy of 90% with  ve subjects in a driving 
simulator.
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1Depending on driving conventions
＊ Reprinted with permission from 8th IEEE Int’l Conference on Automatic Face and Gesture Recognition

１. INTRODUCTION
The primary goal of our researches is to make the 

experience of driving safer and more comfortable. Then it 

is important that vehicle anticipates driver behaviors and 

provides suitable assists and timely information. To enable 

the smart assistance systems, we require algorithms to predict 

the behavior of drivers in advance and react preemptively. In 

such systems, it is imperative that a high level of accuracy 

is achieved so drivers are able to rely on them with a high 

degree of con  dence.

When operating a vehicle, the driver's primary tasks include 

turning at intersections, stopping at stop signs, and changing 

lanes. Secondary tasks not directly related to driving include 

operating the air conditioner, adjusting the seat, or drinking 

a beverage. These tasks divert a driver's attention away from 

primary driving tasks and negatively affect response times. 

It is therefore necessary to predict such operations to warn 

drivers of danger earlier and to assist drivers in operating 

the vehicle more safely. Predictive systems can also lead to 

improvement in the usability of equipment inside the vehicle.

There are two primary challenges in predicting operations 

for driver assistance. First, in order for assistance systems 

to be useful, they must be able to disambiguate operations 

quickly. The typical duration of an operation inside a vehicle 

is on the order of a second. The system must be able to 

operate in a fraction of that time to be able to react usefully. 

Second, most operations performed by a driver are similar, 

at least at the beginning of their execution. For example, 

reaching for the glove compartment and using the center 

panel both involve the left hand1 moving in approximately 

the same direction  at least initially. The challenge is to be 

able to predict the operation early in its execution while the 

behaviors are usually still not signi  cantly distinct.

Our goal is to predict which operation a driver is executing 

from six joint positions (shoulders, elbows and wrists). We 

are interested in accurate prediction as early as possible in the 

evolution of an operation. A camera on top of the windshield 

of the vehicle captures video at 60 frames per second at 640 

× 480  shown in Fig. 1(a). The eventual destinations of the 

left hand in nine operations inside a vehicle are shown in Fig. 

1(b). The time when the driver moves his or her hand away 

from the neutral position on the steering wheel is de  ned as 

the start time of the operation, and the time when the driver 

touched the target equipment is the end of the operation, or 

to be exact, the end of the movement for the operation. The 

duration of the operation is the period between the two events 

de  ned.

In this paper, we use training data to learn models that 

discriminate each object class and use these models for 

operation prediction. During training we cluster the training 

corpus, and we apply multiple discriminant analysis for each 

cluster in the training set. During execution, we find the 

probability of association of the current con  guration to each 

cluster and compute an “expectation” of the  nal operation. 
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The proposed method was applied to predict nine frequently 

performed operations inside a vehicle. On a standard desktop 

computer it runs at an average rate of 172 frames per second. 

For  ve subjects, it achieves an average prediction accuracy 

of 90% with a false positive rate of 1.4% after half the 

operation duration for five subjects. The average duration 

of an operation was 1.2 seconds and this accuracy was 

achieved at an average time of 0.52 seconds. The algorithm 

was compared in performance with HMM-based methods, 

achieving signi  cantly higher prediction accuracies earlier in 

the operation.

２. RELATED WORK
The literature on analyzing human behavior is vast, 

investigating methods to detection humans in single images, 

track humans across multiple frames and analyze human 

behaviors. We would like to mention at the outset of this work, 

that we do not tackle the problem of human detection or tracking. 

A number of methods exist in literature and the interested 

reader is directed to the reference2) and the surveys3)4)6). 

For our purposes, we track markers attached to the joints of 

the driver. The focus of this paper is the analysis of human 

operations or behaviors. Unlike most existing work, we do 

not assume the complete action is available at the onset of 

processing. Instead, we are interested in accurate prediction 

as early as possible in the evolution of an operation.

In general, the Hidden Markov Model (HMM) has been a 

popular technique for recognizing human behavior. It is useful 

for detecting patterns that indicate specified behaviors from 

a temporal sequence. Starner and Pentland10) used HMMs to 

recognize the gestures in American Sign Language. Kahol et 

al.5) employed the HMM based on human anatomy to recognize 

everyday human motion. In the area of driving behavior, Kuge 

et al.7) and Oliver and Pentland8) used a HMM to predict lane 

changing behavior as a primary driving task. However, it is 

difficult to apply HMMs for prediction. HMMs require the 

observation of a certain interval of the sequence to detect target 

behaviors. Such observation intervals delay predictions, which 

is detrimental to our goal of obtaining driver operations as 

quickly as possible.

In another prediction method, Salvucci9) simulated a 

driving plan by modeling a knowledge-based cognitive 

architecture, ACT-R, to infer driver intent. The driver has the 

obvious purpose of controlling the vehicle in the environment 

and uses a consistent strategy to achieve this. Additionally, 

there are operations that result from a driver's needs. 

Therefore, it is possible to predict the operations by modeling 

mechanism of such needs based on the driver's profile, and 

the conditions inside and outside the car. However, it is merely 

an estimation of static probability of whether an operation is 

likely to take place and not an accurate prediction of when 

the driver will take the action. Consequently, it is important 

to effectively utilize lower-level information, including 

posture and movement. Additionally, Cheng et al.1) present 

an approach for recognizing driver activities using a multi-

perspective (i.e., four camera views) and multi-modal (i.e., 

thermal infrared and color) video-based system for robust and 

real-time tracking of important body parts.

３. OPERATION PREDICTION
At each time instant t , we wish to compute the probability  

Fig. 1  Photos of the driving simulator and driver 
indicating six anatomical landmarks. The goal of 
this paper was to predict as early as possible what 
a driver intends to operate, before the operations 
are complete. (a) The locations of the six markers 
on the anatomical landmarks were used as input 
signals to the system. (b) The nine operation 
targets were; (1) navigation, (2) A/C, (3) left vent, 
(4) right vent, (5) gear box, (6) console box, (7) 
passenger seat, (8) glove box, and (9) rear-view 
mirror.

(a)

(b)
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p  (om | dt) that the current observed configuration of the 

driver's joint locations dt originates from the operation om. 

The distribution of data in this feature space is complex. As 

a result, there are no simple classi  ers that can used to learn 

the mapping between con  gurations and different operations 

(Fig. 2(a)), particularly early on in the execution of the action. 

By clustering the data space, the classification problem is 

reduced to a collection of simpler discrimination tasks, shown 

in Fig. 2(b).

The probability can then be computed using Bayes 

Theorem,

p (om｜dt) ＝Σp (om, cj｜dt)
j

＝Σp (om｜cj, dt) p (cj｜dt)
j

 ･･･････････(1)

where {cj} are the set of clusters estimated from the training 

data. We compute the probability p  (c j  | d t) using per-

cluster models, i.e. p (cj | dt) = N (dt | j , j) where N (·) is the 

multivariate Gaussian distribution function whose parameters 

( j, j) are learnt from training data. We describe the model 

estimation process in the next section.

The probability p (om | cj, dt) is, in turn, factored as,

p (om｜cj , dt) ＝ Σmp (dt｜om , cj) p (om｜cj)
p (dt｜om , cj) p (om｜cj)  ･･･････(2)

The probability p  (om | cj) is estimated by measuring the 

frequency of training data originating from om in cj and

p (dt | om, cj) = N (dt | m , j , m , j). Once we evaluate p  (om | dt)

for all m, we predict that operation om = r  is under way if

p  (om = r  | dt)   > 0.5, where  is an empirical constant.

The complete testing algorithm is summarized in Fig. 3.

４. MODEL BUILDING
Models for each operation are learnt from a corpus of 

training data. The configuration of the driver at each time 

instant is used to generate a feature vector, dt . The design 

of this feature space is empirical and we justify its selection 

in Section 5. Each training sequence i  is de  ned by a time-

ordered collection of these vectors, si = (d 0, ..., dn). The set 

of sequences corresponding to each operation om defines 

the set So m
, si ∈ Som

, ∀L (si) = om , where L  (· ) provides 

the operation label for sequence si. The entire training 

set, containing many instances of the nine operations, is 

de  ned as S = So1 , ∪So2∪…∪So9 . Instead of performing 

discriminant analysis directly on the data, we perform two 

intermediate steps. First, we divide S into k clusters, c1, ..., 

ck, using k-means clustering. k-means finds the centroid j 

for each cluster cj. Clustering in this way, before applying 

discriminant analysis on each cluster makes the classi  cation 

task tractable. Second, since all operations commence from 

the same neutral onfiguration (hands on steering wheel), 

they are indistinguishable at the early stages of the operation. 

Thus, once clustering is performed, we weigh each data point 

dt , by a weight determined by a monotonically increasing 

function ƒ (t), such as a linear, sigmoid or step function. Thus 

greater emphasis is place on more discriminant con  gurations 

that occur later on in each sequence.

Once clustering and data weighting is complete, multiple 

discriminant analysis is applied to each cluster to derive 

a mean m , j  and a covariance m , j  for operation om. The 

probability that a feature vector d i
t is from operation om given 

its cluster membership cj is computed as,

p (d it｜om , cj) ＝                         epx  －  k  (d it｜om , cj)(2π)N/2‖Σm, j‖1/2
1 1

2(                    ) ･･･(3)
where k is the Mahalanobis distance,
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Fig. 2  (a) Two-class discriminant analysis.
(b) Discriminant analysis after cluster analysis.
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k (d it｜om , cj) ＝ (d it－μm, j)T Σ-1m, j (d it－μm, j) ･･････(4)

The training algorithm is summarized in Fig. 3.

５. FEATURE SPACE SELECTION
We selected a feature space that consisted of a combination 

of location and velocity vectors. We evaluated different 

feature spaces on data sets of  ve subjects, collected during 

driving in a driving simulator. In the  rst experiment, model 

creation and testing were executed for each driver using 

only instantaneous location information of each point in the 

configuration. The data set for each driver, which included 

450 operations (90 operations each for 5 drivers), was divided 

into four blocks and leave-one-block-out cross-validation 

was performed. Figure 4 shows the recognition rate in the 

best case, worst case and on average within five subjects 

over normalized time from the start of the operation. At 

the half-point of operation (50% operation), the recognition 

rate is 85%, and even in the worst case, it reaches over 75%, 

indicating that potential for predicting driver operation.

We then evaluated the performance on the various 

combinations of the movement vectors for six joints. Adding 

the movement vectors of the left elbow and the left wrist 

to six joint positions, the best performance was obtained, 

shown in Fig. 5(a). The recognition error rates are shown 

in Fig. 5(b). At 50% operation, the average recognition rate 

increases to 94%, improving 9% from the rate in the case of 

six joints. On the other hand, the maximum recognition error 

rate slightly increases for the  rst period of the operations by 

adding two movement vectors, shown in Fig. 6. Thus, the 

feature space used in this paper is 

Fig. 3  Training and testing algorithms.

Given training data                 where              is a feature vector
from sequence i at time in instant t.

      1. Clustering: Cluster data points        using   k-means algo-
          rithm. Learn a per-cluster model           .

      2. Weighting: Weigh all data points        using a temporal
          weighing function        e.g. linear, sigmoid or step function.

      3. Parameter Estimation: Use multiple discriminant analysis
          to learn models                   for each operation.      

{dt}
i

dt  R16 {dt, oL(si)
}i

Training Algorithm

Testing Algorithm

Given an input configuration     .

      1. Association: Compute the probability of association,
                       for all clusters j = 1, …, J.

      2. Discriminant Analysis: For each cluster j , compute
                            , for m = 1, …, 9 (for all nine operations).

      3. Bayes Theorem: Use Bayes Theorem to compute

      
      4. Decision: Select operation

i

 (μj, Σj)

(μm, j, Σm, j)

 f (t),
{dt}

i

p (cj|dt)

p (dt|om, cj)

p (om|dt) = ∑ j p (om, cj|dt)

om if p (om|dt)  ≥ τ > 0.5 

dt
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Fig. 4  Result of estimation directly over confi guration 
space for a dataset of 450 operations.
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(b) Recognition error rate 
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Fig. 5  The infl uence of movement vectors on the 
recognition and error rate. The curves show 
the infl uence of ‘a’ (confi guration vector), ‘b’ 
(movement vector for the left wrist), and ‘c’ 
(movement vector for the left elbow).
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dt＝ [x0, y0, …, x5, y5,, u4, v4, u5, v5]T ∈R16,

where xj and yj are the image locations, uj and vj are image 

velocities.

６. RESULTS
The system shows significant accuracy in predicting 

operations as is shown in Fig. 9. The top row shows instances 

at which actions are correctly predicted for eight operations. 

Based on the location and velocity information, the proposed 

method was applied to predict nine frequently executed 

operations inside a vehicle, running at an average rate of 172 

frames per second. For five subjects, the method achieves 

an average prediction accuracy of 90% with a false positive 

rate of 1.4% at half the operation duration. The bottom row 

shows the eventual destination configurations for the three 

operations.

Figure 8 shows the likelihood of each operation at each 

time instance in a sequence where the driver reaches for the 

navigation console. At 25% of the operation, there exists 

confusion between similar actions like adjusting the A/C. 

As the sequence progresses however, the algorithm is able 

to predict the operation accurately before half the operation 

duration. Table 1 shows the individual prediction rates for 

all nine operations at half the duration of the operation. The 

highest rates were observed for the operations which were 

most spatially separated, i.e. adjusting the rear-view mirror, 

opening the center console box, and opening the glove 

compartment. The lowest accuracy was recorded for adjusting 

the air conditioner, since there are many similar actions in the 

set of nine operations.

Figure 10(b) shows the comparison with the result by an 

HMM-based approach. To create the HMM for prediction, 

every operation sequence was divided into four sequences 

and the HMM was trained on these segmented sequences (the 

number of state and the number of possible observations in 

sequence were decided by experiment). The proposed method 

has an inherent advantage over the HMM for predicting 

driver operations. The target operations are simple and short 

actions not like gestures for communication so that it may 

be dif  cult to represent the differences among equipment as 

sequence of state transition on the HMM.

Fig. 6  Average movement vector of the left wrist for 
four operations. Movement is a strong cue in 
discriminating between different operations 
shown by the trajectories on the x-axis (a) and 
y-axis (b).
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Table 1  Individual prediction results.

A/C Console Glove Navi L Vent R Vent P Seat Mirror Gear Steer

A/C 82.5 0.0 0.0 4.5 0.7 8.0 1.0 0.0 0.0 3.1

Console 1.2 94.8 0.0 0.0 0.0 0.0 0.0 0.4 2.8 0.8

Glove 1.2 0.0 95.6 0.0 1.6 0.0 1.2 0.0 0.0 0.4

Navi 5.0 0.0 0.0 92.9 1.1 0.4 0.4 0.0 0.0 0.4

L Vent 1.1 0.0 0.0 0.8 97.7 0.0 0.4 0.0 0.0 0.0

R Vent 1.8 0.0 0.0 0.4 0.4 95.8 0.0 0.0 0.0 1.8

P Seat 0.0 0.8 0.0 0.0 0.0 0.0 96.9 98.0 1.9 0.4

Mirror 1.2 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.4

Gear 0.0 0.7 0.0 0.0 0.0 0.0 5.0 0.0 93.9 0.4
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We also evaluated the benefit of using the weight for 

training, where the discrete variable of the step is set to 0.3. 

The error rate decreases for the  rst period and the maximum 

error rate also decreases to 11%. Figure 7(a) shows the 

recognition rates. When this weighting scheme is used, 

increasing is delayed, but at 50% operation the recognition 

rate reaches the same percentage as in the case of no weight. 
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Fig. 7  Infl uence of weighting on the recognition and 
error rates.
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Fig. 8  Predicting “accessing the navigation console” at different instances. There was some initial confusion between 
operations that was quickly resolved over time.

Figure 10(a) graphs the true-positive rate versus false-

positive (or false alarm) rate at 50% operation. The result 

with the weight is signi  cantly better than that of no weight. 

As the true-positive rate is 90%, the false-positive rate is 

1.4% for weight and 8.4% for no weight. It describes that our 

method can decrease the false-positive rate without making 

the true-positive rate worse.

７. DISCUSSION
The proposed method can quickly and accurately predict 

nine operations. The method achieves 90% true-positives 

with 1.4% false-positives at half of the operation duration, 

running at an average rate of 172 frames per second. Using 

labeled training data, we use clustering following applying 

by multiple discriminant analysis on each cluster to model 

configurations of each object. During testing, we predict 

which operation is most likely to be under execution given 

the instantaneous con  guration by evaluating membership in 

each operation set.

Future Work: We are currently developing a marker-less 

detection and tracking method. This tracking method will 

be incorporated into the prediction method to evaluate 

the complete prediction system, and we will evaluate 

how the biases of the tracking method affect prediction 

performance. Additionally, we have assumed that drivers 

grasp the steering wheel at the start of operations. In practice, 

however, operations may commence at any posture. We are 

now extending the method to manage natural initiations of 

operations. Finally, we will investigate customized training 

methods, where we create an individual model for each 
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Fig. 9  Images at the time of prediction for eight driver operations. Top: Images at the time when the proposed approach 
outputs the correct answer. Bottom: fi nal confi guration of the operation. 
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Fig. 10  (a) Comparison between True Positives and 
False Positives. (b) Comparison using an HMM-
based approach. 

(a) Console box (b) Rear-view mirror (c) Passenger seat (d) Glove compartment

(e) Left vent (f) Right vent (g) A/C (h) Navigation

driver. This strategy will be tested in real vehicles. The 

system will extract training sequences by sensing the state 

of equipment's interface (e.g. switch, dial, and touch sensor), 

showing the start time and end time of operations. We can 

utilize a prior model that the system then customizes by 

gathering data.
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