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Driving is a cooperative operation between a driver and his

or her vehicle. The steering wheel and pedals convey the

driver’s intention to the vehicle, and the vehicle reflects the

intention in its behavior. Various advanced driver assistance

systems (ADASs) have recently been developed, such as

Adaptive Cruise Control (ACC), the Precrash Safety System

(PCS), and the Lane Keeping Assist System. These ADASs

provide safe and comfortable driving by controlling the

vehicle automatically: ACC controls the vehicle speed

depending on the situation and PCS brakes the vehicle to

minimize collision impact. Thus, the driver and the vehicle

interact closely to drive in safety and comfort.

However, most ADASs can operate in only some driving

situation, e.g., while cruising on a freeway and immediately

before a crash. This is because the systems can recognize

the current situation only in limited circumstances. For clos-

er cooperation between the driver and vehicle, the vehicle

should recognize a wider range of situations, similar to the

range recognized by the driver, and assist the driver with

appropriate timing. Thus, we use the contextual scene seg-

mentation method to segment multimodal driving behavior

into semantic chunks. This method will improve ADASs in

terms of their ability to recognize the driving scene like the

driver.

To segment driving behavior, many kinds of statistical

modeling techniques have been used in previous works,

such as the Hidden Markov Model (HMM)
1)

and the Hybrid

Dynamical System 
2) 3)

. However, most of them do not con-

sider the meaning of the segments. These models discretized

the driving behavior in physical feature space directly, i.e.,

they extract the segments as physical segments, not as

semantic segments.

In contrast, linguists analyze language as a double articula-

tion structure, which has two layers of elements; phonemes

and morphemes. A phoneme is the smallest segmental unit of

sound, and a morpheme is the smallest semantically meaning-

ful unit. In the natural language processing area, word seg-

mentation generally needs a massive parsed corpus 
4)

. For

unknown words that are not included in the lexicon, unsu-

pervised word segmentation based on a non-parametric

Bayesian approach has been developed recently 
5)

. 
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Various advanced driver assistance systems (ADASs) have recently been developed, such as Adaptive Cruise Control and

Precrash Safety System. However, most ADASs can operate in only some driving situations because of the difficulty of recog-

nizing contextual information. For closer cooperation between a driver and vehicle, the vehicle should recognize a wider range

of situations, similar to that recognized by the driver, and assist the driver with appropriate timing.

In this paper, we assumed a double articulation structure in driving behavior data and segmented driving behavior into meaning-

ful chunks for driving scene recognition in a similar manner to natural language processing (NLP). A double articulation analyz-

er translated the driving behavior into meaningless manemes, which are the smallest units of the driving behavior just like

phonemes in NLP, and from them it constructed navemes, which are meaningful chunks of driving behavior just like mor-

phemes. As a result of this two-phase analysis, we found that driving chunks equivalent to language words were closer to the

complicated or contextual driving scene segmentation produced by human recognition.
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In this paper, we assume a double articulation structure in

driving behavior data, i.e., the driving behavior has a hierar-

chy of manemes, which are the smallest meaningless units

of time-series maneuvers, and navemes, which are the

smallest meaningful units of the manemes (Fig. 1-A). The

sticky Hierarchical Dirichlet Process Hidden Markov Model

(sticky HDP-HMM) 
6)

is used to extract manemes from the

driving behavior, and the Nested Pitman-Yor Language

Model (NPYLM) 
5)

is used to construct navemes from time-

series of manemes. These two nonparametric Bayesian

approaches provide unsupervised semantic segmentation of

multimodal continuous driving behavior. This hierarchical

analyzer is called a double articulation analyzer in this

paper. The analyzer determines manemes/navemes and the

most likely numbers of them simultaneously in a statistical-

ly data-driven inference.

The effectiveness of the double articulation analyzer in

terms of contextual scene segmentation was evaluated

through the similarity between segments extracted by the

double articulation analyzer and segments labeled by human

subjects watching a video recording of the driving behavior.

As a similarity metric, we used the well-known F-measure.

We found that navemes were more similar to the driving

scene label than manemes. In addition, navemes were also

more similar to the direction-of-motion label; each naveme

is composed of smaller behaviors: slowing down, steering,

and accelerating. These results suggest that driving behavior

may have a double articulation structure in common with

languages.

This paper is organized as follows. The sticky HDP-HMM

and NPYLM are outlined in section 2, the experimental

setup is described in section 3, and experimental results are

presented in section 4. Section 5 is discussion and section 6

concludes the paper.

This section outlines the double articulation analyzer.

Taniguchi et al 
7) 8)

. proposed a double articulation analyzer

for multimodal sensor data. They successfully extracted an

articulation structure from human motion capture data by

using a sticky HDP-HMM and NPYLM, assuming the dou-

ble articulation structure in the motion capture data. In this

paper, this analyzer is applied to a driving data. The sticky

HDP-HMM and NPYLM are outlined below.

A. Sticky HDP-HMM

First, we segmented driving behavior as continuous and

multimodal time-series data (throttle opening, brake master

cylinder pressure, steering angle, velocity, etc.) in physical

feature space using the sticky HDP-HMM.

For time-series data discretization, an HMM has been wide-

ly used. Latent discrete variables are defined as hidden states

in the HMM. The hidden state transitions from the previous

hidden state through a conditional distribution and generates

the corresponding observation data. In the conventional

HMM, the number of hidden states is assumed to be known,

but it is actually unknown in the driving behavior data. In

contrast, an HMM based on a nonparametric Bayesian

approach has been proposed recently 
6) 9)

. The Hierarchical

Dirichlet Process Hidden Markov Model (HDP-HMM) 
9)

can

Fig. 1　(A)Overview of a double articulation analyzer. The analyzer discretizes driving behavior into manemes, which are the smallest
meaningless units of driving maneuver, and from them it constructs navemes, which are the smallest meaningful units of driving
maneuver. The translation into manemes is achieved by the sticky HDP-HMM, and the construction into navemes is achieved by
the Nested Pitman-Yor Language Model (NPYLM). (B) Overview of NPYLM. Two n-gram models−a character n-gram and a
word n-gram−are used in NPYLM to express the probabilistic distribution of any words.

II. DOUBLE ARTICULATION ANALYZER
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estimate the number of hidden states simultaneously on the

basis of a prior distribution of the number. The sticky HDP-

HMM 
6)

, which is an extension of the HDP-HMM, can

reduce the frequency of transition among hidden states by

biasing the self-transition probability. 

In the sticky HDP-HMM, an infinite number of hidden

states are assumed by an infinite-dimensional prior of the

number through a nonparametric Bayesian approach. A

graphical model of the sticky HDP-HMM is shown in

Fig.2. An infinite-dimensional prior of the number of the

hidden states is generated from a stick breaking process

with parameter . Transition probability is generated

from the Dirichlet process using concentration parameter α,

a self-transition parameter , and the prior , where is

the index of hidden states. An observation is generated

from the distribution of the corresponding hidden state

with distribution parameter , where is the time index.

In this paper, the driving behavior distribution is modeled

as a Gaussian distribution and a blocked Gibbs sampler is

used as the inference method 
6)

.

Here, the estimated time-series of hidden states

are called manemes. The manemes are discrete time-series

that reflect the cluster of driving behavior in the physical

feature space. They have no explicit meaning.

B. Nested Pitman-Yor Language Model

Second, we chunked the time-series of manemes using an

unsupervised morphological analysis in Natural Language

Processing (NLP), i.e., the Nested Pitman-Yor Language

Model (NPYLM).

In NLP, morphological analysis is the extraction of mor-

phemes, which are the smallest semantically meaningful

units in a language. In other words, morphological analysis

is a segmentation of phonemes in speech or segmentation of

characters in a text. Conventional morphological analyses

have required a massive parsed corpus as training data for

machine learning. In contrast, Mochihashi et al. proposed

NPYLM, which segments characters using a massive

unparsed text and a probabilistic language model instead of

a massive parsed corpus.

In NPYLM, two n-gram language models form a hierarchi-

cal structure: one is a character n-gram and the other is a

word n-gram. Both n-grams are described by the

Hierarchical Pitman-Yor Language Model (HPYLM)
10)

.

HPYLM is a model for generating an infinite-dimensional

n-gram distribution by using a Pitman-Yor process , as

a generalization of the Dirichlet process. is a stochastic

process with discount parameter and similarity parameter 

. It generates discrete probabilistic distribution , which is

similar to another distribution , called the base measure.

In HPYLM, the word n-gram distribution is generated from

by using the word (n-1)-gram distribution.

However, in the case of unknown words not in the lexicon,

the base measure of these words is not available, which

leads to the generation of a unigram distribution: the occur-

rence probability of any words. In NPYLM, therefore, the

base measure is given by means of the character n-gram

model, which is also described by HPYLM. This means that

NPYLM allows any words to be generated.

In this paper, NPYLM is applied to time-series of manemes

estimated by the sticky HDP-HMM. The word n-gram is

estimated using the blocked Gibbs sampler, which resamples
Fig. 2　Graphical model of the sticky HDP-HMM 6).
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one sentence in each iteration instead of one word 
5)

. To

make NPYLM applicable to driving behavior, the manemes

are treated as driving characters and time-series sequences of

manemes from departure to parking are treated as one driv-

ing sentence.

Here, an estimated chunk of the manemes is called a

naveme. The navemes are a set of the manemes that appear

repeatedly in driving behavior. Moreover, the navemes are

expected to be meaningful to drivers.

To evaluate the effectiveness of the double articulation

analyzer, we segmented multimodal driving behavior data

observed in a real car into manemes and navemes and com-

pared them with the segments labeled by human subjects.

A. Experimental Paradigm

In the experiment, a subject drove a real car along the two

courses shown in Fig. 3, five times per course, and the driv-

ing data were recorded. Each drive started in the resting

state before departure and finished in the resting state after

parking at the same position. Recorded driving data were

throttle opening, brake master cylinder pressure, steering

angle, and vehicle velocity. The sampling rate for recording

was 10 frame per second (fps).

Photographs taken during the experiment by a camera

mounted on the car are shown in Fig. 4.

B. Preprocessing

In a preprocessing step, the differential values of steering

angle and vehicle velocity were calculated as dynamic fea-

tures. All the observed data (throttle opening, brake master

cylinder pressure, steering angle, and vehicle velocity) and

these two dynamic features were normalized into standard

scores with a mean of zero and variance of one. Finally,

these six-dimensional data were used as observed driving

behavior.

C. Learning of manemes and navemes

First, the sticky HDP-HMM was trained with all the driv-

ing behaviors for the 10 drives. The number of iterations for

the blocked Gibbs sampler was set to 100, and the maximal

number of hidden states was 60; both of these are the imple-

mentation parameters for the sticky HDP-HMM. The ade-

quacy of these parameters was confirmed in a preliminary

experiment.

After the sticky HDP-HMM’s training, 100 time-series of

manemes for each of the 10 drives were sampled for

navemes learning and evaluation. Each maneme time-series

is called a sentence. In this way, 1000 sentences of

manemes were sampled by the trained sticky HDP-HMM. 

Second, the NPYLM was trained with all of 1000 sen-

tences of manemes. The number of iterations of the blocked

Gibbs sampler was set to 100,000, the maximal character

length of words was 8, and n-gram word model was set to

bigram.

After the NPYLM’s training, 10 time-series of navemes for

each of the 1000 sentences of manemes were sampled for

evaluation. In this way, 10,000 sentences of navemes were

sampled by the trained NPYLM.

III. EXPERIMENTS

Fig. 3　Two driving courses used in the experiment. The vehicle
trajectories were estimated from odometry data.
Therefore, the positions deviated from the true data,
e.g., the start and goal were actually the same position
whereas they are different in the figure.

Fig. 4　Typical images of the driving scene. The driver drove a
short course in only about two minutes; the course
included some pedestrians and other vehicles.
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D. Evaluation

To evaluate the similarity between manemes/navemes and

human recognition of driving scenes, we focused on the seg-

mentation points of manemes and navemes.

We asked three human subjects to segment a driving video

into chunks of corresponding to the four labeling-terms

shown in Table 1. The running state, vehicle direction, and

surrounding circumstances are examples of physical terms.

In contrast, the driving scene is an example of contextual

recognition by a human. We instructed the subjects to seg-

ment only according to these labeling-terms, so they had

discretion in deciding the details of labels, i.e., stop, go,

accelerate, and slow down, etc.

Segmentation points estimated by the double articulation

analyzer (analyzer points) were compared with those by

human subjects (human points) via the F-measure, which is

harmonic mean of precision and recall, to evaluate the simi-

larity between them. The analyzer estimated analyzer points

100 times from the driving data for each drive, so the F-

measure was calculated 100 times for each analyzer points

of manemes and navemes across the subjects and across the

labeling-terms. In the F-measure calculation, precision was

calculated as the ratio of the number of analyzer points cor-

responding to human points and all analyzer points, and

recall was calculated as the ratio of the number of analyzer

points corresponding to human points and all human points.

Note that “A corresponding to B” means that the time delay

between A and the nearest point in B is shorter than 2.5[s].

A. Result overview

The results of the analysis of driving data for course B are

overviewed in Fig. 5. The upper figure shows the occur-

rence probability of segmentation points of manemes and

the middle figure shows the occurrence probability of seg-

mentation points of navemes. These probabilities were cal-

culated by performing 100-times sampling repeatedly. The

lower figure shows the segmentation points of the three

human subjects.

The results show that the navemes were significantly

organized, while the manemes were often fine segmented.

Human segmentation points were not much different.

Moreover, there were many maneme segmentation points

around the naveme segmentation points. These were consis-

tent trends across the courses and each drives.

Table 1　LABELING TERMS AND EXAMPLES OF LABELS 

IV. RESULTS

Fig. 5　Overview of results of maneme/naveme segmentation and human segmentation points. The upper figure shows the maneme seg-
mentation probability and the middle figure shows the naveme segmentation probability. The lower figure shows the human seg-
mentation points. Red marks indicate the points related to running state, green marks indicate ones related to vehicle direction,
blue marks indicate the points related to the surrounding circumstances, and pink marks indicate points where the humans felt the
scene switched.
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B. Lengths of manemes/navemes

Histograms of the lengths of manemes and navemes are

shown in Fig. 6. The left figure shows the maneme length

and the center figure shows the naveme length in the data

sampling frame. They show the effectiveness of chunking

from manemes to navemes by NPYLM, i.e., navemes are

significantly longer than manemes. The right figure shows

the number of manemes per naveme. The distribution has

bimodality, which suggests that the navemes can be catego-

rized into two types: long words and short words, like parti-

cles in language.

C. Comparison of manemes/navemes with human recognition

F-measures indicating the correspondence between

manemes/navemes and human recognition are shown in

Fig. 7. All of the bars in both the left and right figures show

averages of F-measures among the three human subjects.

The left and right figures show F-measures for physical and

contextual labels.

For the physical labels (Fig. 7-A), the F-measure of

navemes were respectively higher than those of manemes.

Especially, the F-measures of navemes of vehicle direction

was higher than the others. We think that this is because the

running state label and surrounding circumstances label

were directly related to simple physical quantities compared

with the vehicle direction label was a complex mixture of

physical quantities, such as accelerate/decelerate and

left/right turn. In addition, the F-measures of both manemes

and navemes for the surrounding circumstances label were

lower than those of the vehicle direction label. We think that

this is because the surrounding circumstances label also

contained situations unrelated to driving behavior, such as

far vehicles and pedestrians on the sidewalk.

On the other hand, for contextual labels (Fig. 7-B), the F-

measure of navemes was higher than the F-measure of

manemes. We think that this is because the driving scene

change points recognized by humans depend on the vehicle

direction and some of the surrounding circumstances related

to driving behavior (Fig. 5).

We analyzed the correspondence between a double articu-

lation analyzer based on the double articulation structure of

manemes and navemes in driving behavior and human

recognition of the driving scene. From another different

viewpoint of segmentation, the double articulation analyzer

filters the maneme segmentation points by considering con-

text, so that the filtered segmentation points divide the driv-

ing behavior into long-term chunks. This filtering is

achieved by estimating the likeliest lexicon of navemes to

maximize the probability of generating the provided driving

data, so that complex driving behaviors are extracted as

navemes, such as right/left turn, which is composed of slow-

ing down, steering, and acceleration. Interestingly, this fil-

tering also extracts the segmentation points that human rec-

ognize as driving scene change points.

Contextual labels are more complex than any physical

labels, as shown in Table 1. This means that humans per-

ceive driving scenes as vague chunks in a large sense, and

these large chunks can be decomposed into small physical

chunks of driving. The double articulation analyzer captures

the attributes of contextual labels by assuming the double

articulation structure. By assembling physical labels in the

Fig. 6　Histograms of character/word length and number of
characters in a word. Word length (center figure) is sig-
nificantly longer than character length (left figure). The
number of characters in a word has a bimodal distribu-
tion (right figure).

Fig. 7　F-measure evaluating the correspondence between seg-
mentation points estimated by a double articulation ana-
lyzer and physical labels (A) and contextual labels (B)
assigned by humans. Error bars indicate the standard
deviation of the F-measure due to not only individual dif-
ferences but also the probabilistic sampling method.

V. DISCUSSION
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statistically likeliest combination through a nonparametric

Bayesian approach, it extracts the segmentation points that

well explain human driving scene recognition. It is interest-

ing that the estimated segmentation points correspond to

human recognition even though the data-driven estimation is

based on only maximization of the driving behavior genera-

tive probability.

The effectiveness of the contextual scene segmentation,

i.e., a symbolization framework of driving behavior based

on physical and semantic perspectives has been reported on

the basis that the symbolization enabled a long-term predic-

tion of driving behavior 
11)

. In the present paper, we showed

that the semantic symbolization is related to a human recog-

nition of a driving scene. This suggests that driving behavior

has a double or higher articulation structure in common with

linguistics, where physical and semantic symbols provide a

hierarchical structure.

The results of segmentation similar to human recognition

are expected to lead to novel ADASs. In the future, a driver

and vehicle will communicate with each other and cooperate

in a real sense to drive the vehicle. This is a different

approach from an automated driving system 
12)

that controls

a vehicle without the driver performing any maneuvers. Our

approach of contextual segmentation that does not require

any expensive and high-performance sensors will contribute

to the popularization of safer vehicles.

To achieve this contribution, we need to evaluate the effec-

tiveness of our approach with more subjects in various driv-

ing scenes. Moreover, an investigation of symbolization

from other driving modalities, such as the driver’s biological

signals, environmental images recorded from car-mounted

cameras, and the behavior of surrounding vehicles, is also

important future work.

In this paper, we examined a symbolization framework

based on a double articulation structure of manemes and

navemes that extracted the driving context change points

recognized by humans. In our experiments, navemes had

higher correspondence with the human-recognized driving

context than manemes. This result suggests that human

recognition of driving behavior is based on a double articu-

lation structure in driving behavior. Our contextual scene

segmentation method is expected to lead to novel driver

assistance systems which selects an appropriate ADAS

according to a driving scene comfortably for human.

To develop and verify our method, we will apply it to a

wider range of driving behavior recorded on ordinary roads

by many drivers and in various different environments such

as different times of day, weather, regions, and countries.

Our future work will include applying it not only to driving

behavior but also to other kinds of driving data, such as the

driver’s biological signals, environmental images recorded

from car-mounted cameras, and the behavior of surrounding

vehicles.
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