
140

DENSO TECHNICAL REVIEW Vol.21 2016

基
盤
技
術

Modern vehicle systems have transitioned from being

isolated, stand-alone systems to interconnected systems

with external interfaces. As a consequence, vehicles are

now the target of cyber security attacks. There already

exist several works presenting security vulnerabilities

on vehicle systems, threat and risk analysis methods

and relevant security countermeasures such as

SecOC in AUTOSAR1). The foundation for security

solutions is often strong cryptography and as such

the management of cryptographic keys is extremely

important to ensure a high level of security.

For example, each ECU in a vehicle may require one

or several cryptographic keys. The challenge is how

to load such keys in a secure and efficient manner.

One existing approach is that keys in the ECUs are

managed by an OEM backend and loaded into the

ECUs during, for example, production. However,

in some cases, it is better to manage the keys for the

in-vehicle network in each vehicle itself rather than

on an OEM backend. Therefore, we are proposing

approaches for in-vehicle key management. The focus

is on key establishment of symmetric keys among

ECUs within a vehicle.

The proposed approaches require a Key Master in

Approaches for Secure and
Efficient In-Vehicle Key
Management*
Takeshi SUGASHIMA Dennis Kengo OKA Camille VUILLAUME

Modern vehicles utilize various functionalities that require security solutions such as secure in-vehicle

communication and ECU authentication. Cryptographic keys are the basis for such security solutions. We propose

two approaches for secure and efficient in-vehicle key management. In both approaches, an ECU acting as a Key

Master in the vehicle is required. The first approach is based on SHE. The Key Master generates and distributes

new keys to all ECU based on the SHE key update protocol. The second approach performs key establishment

based on key derivation. The Key Master sends a trigger in form of a counter and all ECUs derive new keys based

on the received counter value and pre-shared keys. It is thus possible to handle in-vehicle key management

without the need for an OEM backend to manage all keys. This reduces cost and complexity of the solution. It

avoids using the same keys in a vehicle for long periods of time since keys can be updated regularly within the

vehicle without any external interaction. We have implemented the approaches on a test bench and performed an

evaluation.

 Key words :

security, key management, key distribution

Introduction

＊ 2016年 8月 22日　原稿受理

141

the vehicle which is responsible for the in-vehicle key

management. Each ECU in the vehicle can then load

new keys that are either generated and distributed by

the Key Master or derived on each ECU based on a

trigger from the Key Master. These approaches have

the following advantages:

● Improve security strength, by separating the

necessary key management to be handled on an

OEM backend and on the in-vehicle network, and

making it easy to have different, short-lived session

keys within each vehicle

● Enable faster assembly as it is not necessary to

generate and load all keys onto the ECUs during

production and thus reducing the time needed to

be connected to the OEM backend

● Enable replacement of ECUs at dealer locations

without the need to be connected to the OEM

backend to download keys

● Reduce cost and complexity as it is not necessary

to manage all keys in one central location on an

OEM backend.

The main contributions of this paper are:

● We propose approaches for secure and efficient

in-vehicle key management, which handle key

management of ECUs in each vehicle itself rather

than on an OEM backend.

● We have designed simple protocols based on

key distribution and key derivation approaches,

respectively, where a Key Master in a vehicle

generates and distributes new keys to ECUs or

triggers each ECU to derive new keys.

● We have implemented the protocols on a test bench

and performed an evaluation of the results in terms

of performance and security.

HIS, a car consortium consisting of several major

German auto manufacturers, has developed an

implementation specification for secure hardware

called SHE (secure hardware extension)2)3). SHE

provides various security functionalities such as MAC

generation and verification based on a hardware AES

engine and loading of symmetric keys into secure

key storage4). To be able to support security use cases

where SHE functionality is not sufficient, Bosch has

developed a Bosch HSM (hardware security module)

specification5). HSM provides further support for

security functionalities as it has in addition to a

hardware AES engine, a dedicated secure CPU and

secure memory allowing it to be programmable to

support a vast range of use cases. The AUTOSAR

specification 4.2.1 includes CSM (crypto services

manager) and describes how cryptographic keys

can be used to support use cases such as to protect

the in-vehicle communication. For example, the

SecOC module provides functionality to enable

MAC generation and verification for in-vehicle

CAN communication1). There are some APIs for

key management in AUTOSAR CSM such as key

derivation and key generation6). However, there is

at this time no clearly defined APIs for, e.g., key

distribution, session key activation and loading keys

into key storage. Thus, AUTOSAR does not explicitly

specify how keys should be managed within the

vehicle.

Furthermore, there exist an international standard

which provides mechanisms for key establishment

and key management7). These mechanisms are based

on symmetric key and asymmetric key techniques,

respectively.

There are many use cases which require cryptographic

keys in ECUs to be used. A few representative use

cases are listed in Table 1.

From Table 1, it is clear that for some use cases it

Related work

Problem statement

142

DENSO TECHNICAL REVIEW Vol.21 2016

基
盤
技
術

is more suitable and even required to use in-vehicle

key management. In particular, in-vehicle message

authentication requires extensive in-vehicle key

management for the following reasons. First, it is

much easier to manage just the relevant keys within

each vehicle rather than managing all keys in an OEM

backend. Second, in the SecOC, a freshness value is

included in the authentication of messages 1), and to

prevent replay attacks, the same pair of freshness value

and key can never be used twice. To ensure that they

are never used twice, there are two possibilities:

● Storing the current freshness value in non-volatile

memory (NVM) when turning the ignition off so

that it is possible to increment and continue using

the freshness value with the same key.

● Distributing new session keys when turning the

ignition on, in which case the freshness value can

be reset.

The former approach might be difficult in practice as

writing the freshness value in NVM while the ECU is

in shutdown sequence may cause the write operation

to fail, and might lead to situations where the freshness

values are out of sync. The latter approach is more

robust, but requires key management.

Using an OEM backend to manage all keys required

in ECUs is a costly and complex endeavor. Moreover,

since all the necessary keys in the ECUs typically need

to be loaded into the ECUs during production, it is

a time-consuming process. Furthermore, in general,

vehicles are in the field a very long time. If the keys

cannot be updated frequently, there is a risk that the

same keys are used for long periods of time and thus

susceptible to various attacks. For example, if a key is

compromised, the key must be renewed. If an OEM

backend is used, the vehicle is required to establish

a wireless connection to the OEM backend which

may not be possible for all vehicles or is required

to be taken to a workshop. Even if the vehicle is at

a workshop, the dealer technician may not be able

access the OEM backend due to lack of network

connectivity. In addition, if all ECU keys are managed

by an OEM backend, corresponding keys are required

to be sent to each ECU. In this case, it will take a long

time to distribute all keys to all relevant ECUs. In-

vehicle key management would solve these problems.

Threats to the in-vehicle key management approaches

we consider in this paper are as follows:

● Attacker distributes own keys to ECUs

● Attacker illegitimately obtains legitimate keys

● Attacker forces ECUs to establish/share keys which

were used in the past (replay attack)

*1; In-vehicle message is verification MACs for Secure

On-board Communication (SecOC) in AUTOSAR1).

In this case, cryptographic keys are used only in a

vehicle.

*2; Using keys to generate and verify responses in the

Challenge and Response protocol (service $27) 8).

*3; Update program; RSA for signature and AES for

encryption are used 9).

In this section, we propose two key establishment

approaches: 1) key distribution based on SHE 2), and

2) key establishment based on key derivation. For

Key management proposal

Table 1　Representative use cases

Fig. 1　In-vehicle key managements

143

both these approaches, a Key Master is required in the

vehicle, e.g., a Central Gateway ECU could play this

role. Our suggested approaches would be especially

suitable for in-vehicle message authentication.

ECUs enabled with SHE functionality allow for

ECU key loading – refer to 4) for details about the

SHE load key command. The typical use case using

the key update protocol in SHE would require an

external entity to generate keys and the messages

relevant to key loading (M1, M2, M3) to be able to

load the keys onto the SHE-enabled ECUs. The M1,

M2 and M3 contain among other the target UID

(unique identifier) in M1, the new key encrypted

with another key in M2, and a MAC calculated over

this data in M3. The receiving ECU replies with the

messages M4 and M5 which provide digital evidence

that the new key has been loaded properly. M4

contains information which key was updated, and

M5 is a MAC calculated over M4. A SHE-enabled

ECU cannot be used to securely load keys onto other

SHE-enabled ECUs because SHE is implemented in

hardware and cannot be programmed; therefore, there

is a need for a (non-SHE) Key Master in the vehicle.

The SHE-based approach is depicted in Fig. 2. In our

proposal, the Key Master generates new keys and sends

the corresponding M1, M2, and M3 to each ECU.

M2 and M3 are created using a pre-shared MASTER_

ECU_KEY. Using a wildcard value for UID, all

ECUs’ keys can be updated at the same time based

on the same set of M1, M2 and M3, i.e., broadcast

key distribution. Alternatively, keys can be loaded

into each ECU individually by specifying the target

UID. M1, M2 and M3 are 16 bytes, 32 bytes and 16

bytes respectively. The Key Master needs to generate

keys and corresponding M1, M2, M3 for each Key_1,

Key_2 etc. that must be loaded into an ECU. Once

the keys have been loaded into the memory slots in

SHE, the respective keys can be used at will by SHE.

MASTER_ECU_KEY also can be updated by same

sequence.

Typically, M4 and M5 are generated by the ECU in

the SHE key update protocol. M4 and M5 are 32

and 16 bytes, respectively and only used to provide

verification that the new key was properly loaded; if

this verification is not required, M4 and M5 can be

discarded. However if verification is necessary, since

M4 and M5 are large in size and we are concerned

about performance, we suggest that the ECU replies

to the Key Master with an 8-byte Res value instead.

The Res value provides the same verification that the

new key was properly loaded, albeit with a shorter

message length so that it would fit into one CAN

frame. The Res value can be calculated by using the

generate MAC function on SHE using the newly

created key over the UID of the ECU. The value can

then be truncated to 8 bytes and returned to Key

Master. Including the unique UID in the calculation

of Res allows the Key Master to identify which ECUs

have properly loaded the keys.

Additionally, it would be possible for the ECU to

trigger a key update by initially sending a specific

request to the Key Master.

The second approach is based on key derivation and

Approach 1 - Key distribution based

on SHE

Approach 2- Key establishment

based on key derivation

Fig. 2　Broadcast key distribution based on SHE

144

DENSO TECHNICAL REVIEW Vol.21 2016

基
盤
技
術

illustrated in Fig. 3. The Key Master and all ECUs

have a pre-shared 4-byte counter cnt and a pre-shared

key that will be used to protect the counter value (e.g.,

Key_0). Additionally, all ECUs have pre-shared keys

that will be used as session keys (Key_1, Key_2 etc.)

stored in secure key storage in SHE. The Key Master

increments the counter and adds a 4-byte MAC

generated using the pre-shared key Key_0 over the

counter value. The 8-byte message is then sent to all

ECUs as a trigger to update the keys. Each ECU first

verifies the MAC of the received message and that the

received counter value is higher than the local counter

value, and if so stores it as its local counter value. Each

ECU then derives session keys (SKey_1, SKey_2 etc.)

using KDF (key derivation function) and the locally

stored 4-byte counter and respective pre-shared key

(Key_1, Key_2 etc.). In this paper, we assume SHE-

enabled ECUs, and therefore we use CMAC as KDF.

Each ECU stores the derived session keys in RAM.

For SHE to be able to use a specific key, that key needs

to be loaded into SHE as a RAM_KEY. There is only

one RAM_KEY slot in SHE; therefore, every time a

specific session key needs to be used by SHE, it needs

to be first loaded as a RAM_KEY.

Since this approach is performance-focused, Res values

are not calculated. However, if the Key Master needs

to confirm that the session keys have been loaded

properly, the same method as in Approach 1 could be

used.

Requirements for the key management approaches are

shown in Table 2 and Table 3.

In our prototyping, we tried to use AUTOSAR CSM;

however, the APIs relevant to key management are

not defined in detail. Therefore, in Table 4, we

propose some details for APIs that are suitable for our

suggested approaches.

We have implemented the two approaches presented

in previous section and performed an evaluation of

performance and analysis of the implementation. The

setup is described as follows:

Evaluation and analysis

Table 2　Requirements for key management approach 1

Table 3　Requirements for key management approach 2

Fig. 3　Key establishment based on key derivation

Table 4　APIs proposal

Table 5　implementation environmentl

145

We used two microcontrollers for MCU A and B.

Each microcontroller is compliant with SHE, and

these are designed by different semiconductor vendors.

The task period and CAN transmitting period are

based on realistic performance. The software sizes

required to run the in-vehicle key management are

shown in Table 6.

*RAM size depends on message buffer size.

Approach 1

The results for Approach 1 are first discussed. The

Key Master distributes one key to one or several

ECUs. Several ECUs could perform the same steps

in parallel to load the same key. To load multiple

keys, the protocol is repeated until all keys have been

distributed. The flow and time measurements are

shown in Fig. 6. The two “task-independent” columns

show the measured processing and communication

time for the specific independent task operations on

the microcontroller level. The right column shows the

actual measured time for the implementation of the

function including any overhead. As the independent

tasks for processing (3.3ms) and communication

(3.2ms) take about only 6.5ms in total, the total key

distribution time could be reduced by optimizing the

implementation (current implementation takes 32

ms).

The key generation based on true random number

generation (TRNG) and the communication times

are the most time-consuming parts in this protocol.

Table 6　Software sizes

Fig. 4　Implementation of Key master

Fig. 5　Implementation of ECUs

Fig. 6　Approach 1 flow and time measurements

146

DENSO TECHNICAL REVIEW Vol.21 2016

基
盤
技
術

TRNG time depends on the performance of the

microcontroller. In this prototyping, the initialization

of TRNG takes long time. It shall be done before the

key distribution process. To generate and send the

M1, M2, M3 messages over CAN takes around 27ms

(steps a, 1, b, c in Fig. 6). If keys are distributed by

broadcast, the Key Master sends M1, M2, and M3

only once per key, and one Res response message is

sent per ECU per key, which takes around 5 ms (steps

2, d). As a result:

● Loading one key takes: 27 ms + (5 ms * <number of

ECUs>).

● Total time: <number of keys> * (27 ms + (5 ms *

<number of ECUs>))

It would be possible to perform some steps in parallel.

For example, while Key Master is sending M1-M3 to

the first ECU, the Key Master can generate keys and

M1-M3 for the following ECUs.

Analysis about the threats that we defined

To protect M2 and M3, a pre-shared MASTER_

ECU_KEY needs to be stored on the Key Master and

the ECUs. This initial key needs to be loaded during,

e.g., production. For an attacker to be able to load

own keys, the attacker needs to know the MASTER_

ECU_KEY to be able to create legitimate M2 and

M3. As long as the MASTER_ECU_KEY is secure,

an attacker cannot load his own keys. The MASTER_

ECU_KEY is stored in the secure storage of the Key

Master and in a SHE key slot in each ECU, and the

new keys are loaded into SHE secure key storage on

each ECU. As a result, it is assumed that an attacker

cannot modify or extract the keys. If an attacker

replays M1, M2 and M3, the included counter value

for the corresponding key will be incorrect and the

command to load the key will fail, thus preventing

replay attacks.

Approach 2

The results for Approach 2 are described below. The

Key Master initiates the key update by incrementing

the counter and calculating a MAC and sending the

counter and MAC to the ECUs. The same steps can be

performed in parallel on all ECUs to derive the keys.

The flow and time measurements are shown in Fig. 7.

First, the transmission of the 8-byte counter and

MAC value from the Key Master to the ECUs takes

around 4ms (steps a, 1 in Fig. 7). The ECU then

performs the necessary calculations to verify the MAC,

synchronizes the counter value and then uses KDF to

derive the session keys. These steps take around 1ms

(steps b, c). The key derivation is repeated for all the

keys that need to be generated. The individual task to

generate one session key on the microcontroller level

takes around 40us (step 3 processing time), thus the

implementation time of 1ms would not significantly

change even if several keys are generated at this step.

As a result:

● Total time to derive one or several keys: 5 ms

Every time a session key needs to be used, it needs to

be loaded into SHE first. The load time for a key is

about 5us. Since there is only one RAM key slot, the

corresponding key needs to be loaded before it can be

used. For example, if the keys are used for secure in-

vehicle communication, the corresponding key needs

Fig. 7　Approach 2 flow and time measurements

147

to be loaded into the RAM key slot before it can be

used to verify the MAC of the message. Since we

consider the time to load a new session key into the

RAM key slot to be negligible (5 us), it is possible to

easily switch between multiple keys.

Analysis about the threats that we defined

For an attacker to be able to load own keys in the

ECUs (i.e., be able to load a key in an ECU that the

attacker knows), the attacker needs to know the keys

Key_1, Key_2 etc. stored in each ECU. Since the

keys Key_1, Key_2 etc. are stored in the SHE secure

key storage, we consider that it not possible to extract

such keys. However, because session keys are stored

in RAM, these keys are susceptible to attacks (e.g.,

disclosure or modification). Simple replay attacks are

prevented as the ECUs verify that the received counter

value is higher than the locally stored counter value. In

addition, since the counter sent by the Key Master is

authenticated, it is not possible for an attacker to send

fake counters that can trigger key updates in ECUs.

If security is the most important factor for the use

case in question and it is acceptable to allow a slight

delay initially to load all keys securely, Approach 1 is

suggested. If many keys are used and performance is

extremely time-critical and it is not possible to wait

to load all keys individually using the corresponding

M1, M2 and M3, Approach 2 would be more

suitable. There exist some open issues that need to be

resolved. During testing on some microcontrollers,

for Approach 1, e.g., the time to store a key into

ECU B was sometimes abnormally long (~300 ms),

probably due to flash erase operations. Flash memory

needs to erase operation before writing new data.

The microcontroller used for ECU B has large flash

block. If the erased area is left, storing new key into

Summary

ECU B takes about 300us. When the flash block is

filled, erase operation has to be run and take over

300ms. The microcontroller used for ECU A has

smaller flash block than the microcontroller for ECU

B, the erase operation is run on all key load. The key

load operation takes over 3ms every time, but this

operation time is constant. For this problem, our

suggestion is as follows.

–　Providing two slots for one key

–　Key in first slot is used

–　New key is generated, distributed and store to the

second slot during the driving session

–　Valid key slot is switched during ignition on

For Approach 2, the counters on the Key Master and

ECUs may get out of sync, and may require to be

reset. There needs to be a secure protocol to handle

out-of-sync counters.

A suggestion for synchronized counter approach is as

follows. The 4-byte counter consists of two parts: 2

most significant bytes (MSB) counter incremented for

every ignition on, and 2 least significant bytes (LSB)

counter incremented for each key update. When

turning the ignition on, the Key Master increments

and distributes the MSB counter with a 6 bytes MAC

calculated over the 4-byte counter using the pre-shared

key stored in SHE. The LSB counter on the Key

Master is reset to zero. The ECUs verify the MAC and

compare the received counter to its own MSB counter.

If the received counter is greater than stored counter,

it replaces the locally stored MSB counter with the

received counter value and resets the local LSB counter

value to zero. Since this counter is stored early during

the driving session, it is assumed the write to NVM

is successful. The key update while driving is similar

but instead of the Key Master distributing the MSB

counter, the Key Master increments and sends the LSB

counter to the ECUs. If the received counter is larger

than locally stored LSB counter, it replaces the locally

stored LSB counter with the received counter value.

148

DENSO TECHNICAL REVIEW Vol.21 2016

基
盤
技
術

Session keys are then derived using the locally stored

4-byte counter. If ignition on happens 10 times a

day, a 2 bytes MSB counter will be effective for about

18 years. This counter can be reset when pre-shared

key is renewed. If support for a longer time period is

necessary, pre-shared key should be renewed before

counter overflow, or a longer counter could be used.

Even if the ECU would be in shutdown sequence,

there is no need to write the latest LSB counter value

to NVM as it will always be reset to zero at ignition

on. This approach would prevent out-of-sync counters

as long as the MSB counter has been previously

written properly to NVM.

In this paper, we propose two approaches for secure

and efficient in-vehicle key management, and

additionally specify some details for suitable APIs in

AUTOSAR CSM to be used with the approaches. In

both approaches, an ECU acting as a Key Master in

the vehicle is required. The first approach is based on

SHE. The Key Master generates and distributes new

keys to all ECU based on the SHE update protocol.

To reduce the required time, it is possible to broadcast

keys to several ECUs at the same time. The second

approach performs key establishment based on key

derivation. The Key Master sends a trigger in form

of an authenticated counter and all ECUs derive new

keys based on the received counter value and pre-

shared keys. We have implemented the approaches on

a test bench and performed an evaluation. Approach

1 takes roughly 32 ms per key to load into SHE on an

ECU (several ECUs can be loaded in parallel). Once

all keys have been loaded, they are ready to be used.

Approach 2 takes roughly 5 ms to generate all new

keys on an ECU (can be done in parallel). Every time

a key needs to be used, it needs to be loaded into SHE

first which takes about 5us. For Approach 2, because

keys are stored in RAM before they are loaded into

SHE secure key storage, the keys are susceptible to

attacks (modification, disclosure). If performance for

the use case in question allows a slight delay initially

to load all keys securely, Approach 1 is suggested. If

many keys are used and performance is extremely

time-critical and it is not possible to wait until all keys

have been loaded individually using the corresponding

M1, M2 and M3, Approach 2 would be more suitable.

For example, approach 1 can be used to share the key-

derivation key, and approach 2 can be used to derive

session keys.

The suggested approaches use a Key Master in the

vehicle to handle in-vehicle key management without

the need for an OEM backend to manage all keys.

This reduces cost and complexity of the solution. It

avoids using the same keys in a vehicle for long periods

of time since keys can be updated regularly within the

vehicle without any external interaction. There exist

many use cases where cryptographic keys are used

in vehicles such as secure in-vehicle communication

and ECU authentication. The suggested proposals for

secure and efficient in-vehicle key management can

enable and improve security for such use cases.

References

1)　AUTOSAR Release 4.2.1, “Specification of Module Secure
Onboard Communication, Communication Stack,” 2014.

2)　Hersteller Initiative Software (HIS), “SHE- Secure Hardware
Extension, Function Specification, Version 1.1,” 2009.

3)　Fuj i t su Seminconductor, “SHE - Secure Hardware
Extension,”in Workshop on Cryptography and Embedded
Security at embedded world conference, Nuremberg, 2012.

4)　Freescale Semiconductor, “Using the Cryptographic Service
Engine (CSE) - An introduction to the CSE module,” 2011.

5)　J. G. M. I. J. S. R. S. a. M. E. Oliver Bubeck, “A Hardware
Security Module for Engine Control Units,” in escar -
Embedded Security in Cars, Dresden, 2011.

6)　AUTOSAR Release 4.2.1, “Specification of Crypto Service
Manager, System Services,” 2014.

7)　ISO/IEC, “ISO/IEC 11770 - Information technology -
Security techniques - Key management,” 2010.

8)　ISO/IEC, “ISO/IEC 14229-1 - Road vehicles -- Unified
diagnostic services (UDS) -- Part 1: Specification and

Conclusions

149

requirements,” 2013.
9)　Hersteller Initiative Software (HIS), “HIS Security Module

Specification Version 1.1,” 2006.

菅 島 健 司
すがしま たけし

電子基盤システム開発部

車載セキュリティの技術開発

Camille Vuillaume
カミーユ ヴィオム

イータス株式会社　エンベデッドセキュリ

ティPh.D.　博士 (システム情報科学)
車載セキュリティのコンサルティングに

従事

著者

Dennis Kengo Oka
岡 デニス 健五

イータス株式会社　エンベデッドセキュリ

ティPh.D.　工学博士
車載セキュリティのコンサルティングに

従事

