青い光が拓く新たな純銅接合・3D プリン ティング技術

Development of Copper Joining and Additive Manufacturing Technology using Blue Diode Laser

塚本 雅裕 Masahiro TSUKAMOTO

1. はじめに

近年,自動車の自動走行運転システムや音声認識等は IoT・AI・ビッグデータ活用により,目覚しく進化して おり,今後もその進化は加速するものと思われる.自動 走行運転システムが機能するスマートモビリティ社会で は,IoT 環境下,私たちが AI に目的地を知らせるだけ でルート案内はもちろんのこと,ビッグデータから引き 出した搭乗者全員の個人情報から趣味嗜好,健康状態ま でを AI が把握し,目的地までの休憩場所の選定,好み のレストランへの案内等,全てをこなしてくれるだろう. このような世の中はそう遠くない未来に実現されるもの と思われる.(Fig.1未来の乗り物,AI 搭載自動走行車)

この自動走行を実現する AI 搭載自動走行車のコアと なっているのはモーターである.モーターのコイルには 電気伝導率の高い純銅材料が使用されているので,純 銅の加工技術は必要不可欠である.また,モーター用 純銅部品を高速高品質に作り出すための金属積層造形 (3D プリンティング)技術も期待される.また,自動車 産業だけではなく電気産業,宇宙産業等でも純銅のレー ザー加工の要求は高い¹⁾²⁾.我々は,純銅加工には波長 450nmの青色半導体レーザーが適していると考え,同 レーザーの優位性を示すと共に同レーザーを用いた加工 システムの開発および純銅溶接,純銅の 3D プリンティ ングの基盤技術開発を進めている.

本報では、まず青色半導体レーザーの優位性を示し、 3D プリンティング技術の一つであるレーザーメタルデ ポジション(Laser metal deposition:LMD)の新方式に ついて紹介する.次に新方式を適用した青色半導体レー ザーを6台用いたLMD装置の開発および当該装置によ る純銅コーティングの結果について報告する³⁾⁻⁸⁾.次に 100W青色半導体レーザー開発および当該レーザーを3 台用いた世界初青色半導体レーザー搭載複合加工機に ついて紹介する.また,200W青色半導体レーザーおよ びレーザービームコンバイニング技術を駆使して開発し た1kW青色半導体レーザーについて報告する.最後に 選択的レーザー溶融法(Selective laser melting:SLM) に基づく青色半導体レーザー搭載簡易 3D プリンターに ついて紹介する.

Fig.1 自動走行車(イメージ)

2. 青色半導体レーザー

2.1 純銅に対する光吸収率の波長依存性

一般的なレーザー溶接やレーザー切断などに用いられ ているレーザーは、波長 0.8 – 1.08 µ m の近赤外線レー ザーである. 純銅に対する光の吸収率は Fig. 2 に示すよ うに近赤外線レーザーの波長域では 10%以下⁹⁹と低い ため、当レーザーによる純銅の加工は困難である. しか しながら、波長が 500nm 以下になると急激に光の吸収 率は増加し、波長 400nm 帯では吸収率が 60%に達する ⁹⁾¹¹⁾. つまり波長 400nm 帯のレーザーを使用することで、 純銅の加工が容易に行なえる. そこで我々は、発振波長 が 450nm の青色半導体レーザーに着目し純銅加工を試 みてきた.

Fig. 2 純銅に対する光吸収率の波長依存性

2.2 LMD 技術

従来方式のLMDの模式図をFig.3に示す.加工ヘッ ドの中心から高出力レーザーを照射し,母材表面に溶融 池を形成してそこへ材料粉末をサイドから噴射投入する ことで皮膜を形成することができる.従来方式LMDで は溶融池の安定形成が重要であり,数kW以上の高出 カレーザーを必要とする.そのため精密部品への加工で は,母材の歪みや希釈の影響が問題となる.内閣府戦略 的イノベーション創造プログラム(SIP)「高付加価値設 計・製造を実現するレーザーコーティング技術の研究開 発」(以下 SIP プロジェクト)では,従来方式LMDの レーザーと粉末流の位置を置き換えたマルチビーム方式 (Fig. 4)を提案し、マルチビーム加工ヘッドを開発した ¹²⁾.本方式は母材の歪みや希釈の影響が少ないため小型 で薄肉かつ高精度な製品に対応可能な皮膜形成(コー ティング)技術である.

Fig. 3 従来方式のレーザーメタルデポジッション

Fig. 4 マルチビーム方式によるレーザーメタルデポジッ ション

2.3 マルチビーム方式 LMD 技術の開発

SIP プロジェクトにおいてマルチビーム方式を採用したLMD 装置を開発した.当装置では6本のレーザーを加工点で重畳することができる(Fig. 5).開発当初,市販されていた青色半導体レーザーの出力は20W だった.しかし,6台(6本)の20W 青色半導体レーザーをマルチビーム加工ヘッドに搭載し,それぞれのビームを重畳すると,基板上で総出力,約100Wを得ることが出来る.当該マルチビーム加工ヘッドを用いて純銅の皮膜形成を試みた¹³⁾¹⁴⁾.粉末として,平均粒径が30µmの純銅粉末を使用した.レーザー照射と粉末供給を同時に行うと,飛行中の純銅粉末が加熱され¹²⁾,基板上にて溶融

凝固して純銅皮膜が形成される. Fig. 6 に純銅の皮膜形 成結果を示す. このようにラティス構造皮膜やスパイラ ル構造など皮膜形成だけでなく,純銅のパターニングが できるようになった.

Fig. 5 6本のレーザービーム重畳

Width of layer : 3mm

Fig. 6 6 台の青色半導体レーザーを用いたマルチビーム方 式 LMD 装置により形成された (a) 純銅ラティス構

造皮膜 (b) 純銅スパイラル構造皮膜

3. 世界初 青色半導体レーザーを搭載 した複合加工機の開発

純銅の皮膜形成や溶接には、10⁵~10⁶ W/cm²のパワー 密度が必要となる.20W 青色半導体レーザー1台では、 出力、および達成されるパワー密度が低い.そこで、我々 は、NEDO「高輝度・高効率次世代レーザー技術開発」 (2016 年度から2020 年度)(以下 NEDO レーザーPJ) において、株式会社島津製作所と国立大学法人大阪大学 接合科学研究所が日亜化学工業株式会社の協力のもと、 青色半導体レーザーの高輝度・高出力化の研究開発を推 進している.2018 年にはコア径 100 µm、ファイバー端 出力100W の青色半導体レーザーを開発した.本レー ザーは、ファイバー端でのパワー密度が 1.3x10⁶ W/cm² に達し、世界最高輝度を達成した。100W の青色半導体 レーザー3台をマルチビーム加工ヘッドに組み込み (Fig. 7)、世界で初めて当該加工ヘッドを搭載した複合加工機 を NEDO レーザー PJ 参画企業のヤマザキマザック株 式会社とともに開発した。当該加工機では切削加工と付 加加工が可能となった。Fig. 8 に当該加工機の外観写真 を示す。当該加工機では、従来加工が困難であった純銅 材料の高効率・高品質溶接や LMD が可能となった。

Fig. 7 青色半導体レーザーマルチビーム加エヘッド. 100W 高輝度青色半導体レーザーを3台搭載

Fig. 8 青色半導体レーザー搭載複合加工機

4. 更なる高輝度・高出力化にむけて

4.1 高輝度青色半導体レーザー光源の開発

前述した青色半導体レーザーの出力を 100W から 200 W に増大させた. コア径は 100 μ m なので, ファイバー 端でのパワー密度は 2 倍の 2.6 × 10⁶ W/cm² となり, 青 色半導体レーザー光源単体としての世界最高輝度を更新 した. 本レーザーを用いてφ 10mm, 厚み 0.5mm の純 銅パイプと SUS304 パイプの異種材料接合(突合せ溶接) を行い, 高輝度青色半導体レーザーの効果を実証した.

4.2 コンバイニング技術による高出力化:1kW 青色 半導体レーザー

5台の200W 青色半導体レーザー光源から出力され たレーザー光を1本の光ファイバーに結合するために, レーザービームコンバイニング技術を新たに開発した. Fig. 9 に青色半導体レーザービームコンバイニング技術 の模式図を示す. Fig. 9 に示しているように1本の光ファ イバーから出力1kWを達成した.高出力化と入力側の 光ファイバーコアの小径化を両立したことにより,出力 端における光ファイバーのコア径およびNA はそれぞれ 400µmおよび0.20である.高出力化・高輝度化によって, 従来の青色半導体レーザー技術では難しいとされていた 数 mm 厚の純銅積層のためのLMDを始め,レーザー 切断加工等の実現に向けて前進した.電気自動車(自動 走行車)はもちろんのこと,高い精度が要求される航空・ 宇宙などの産業における加工での利用が見込め,今後の 応用展開に期待が集まっている.

Fig. 9 1kW 青色半導体レーザービームコンバイニング技 術の模式図

6. 波及効果

本プロジェクトで開発した 200W 高輝度青色半 導体レーザーを選択的レーザー溶融 (Selective Laser Melting: SLM) 方式による簡易 3D プリンターに組み 込み,純銅の積層造形を試みた. Fig. 10 に当該簡易 3D プリンターの (a) 外観写真および (b) 原理模式図を示す. パウダーベッド上のレーザー集光スポット径は 100µm を実現している. X-Y ステージに取り付けたレーザー集 光ヘッドを走査することで,パウダーベッド上の必要な 部分の純銅粉末を溶融凝固させ積層造形物を形成した (Fig. 11). 従来の近赤外線レーザーでは困難であった純 銅の積層造形が可能となり,スマートモビリティー社会 を構成する自動走行車等に必要な純銅部品製造の高精度 技術開発へと繋がる.

純銅に対する光の吸収率が近赤外線の波長領域よりも

Fiq. 10 100W 高輝度青色半導体レーザーを用いた SLM 方式による簡易 3 D プリンター, (a) 外観写真, (b) 原理模式図

青色の波長領域において高いことを示してきたが,これ は,他の金属材料に対しても同様である⁹⁾.つまり,青 色半導体レーザーは,他の金属材料を加工する場合にお いても従来の近赤外線半導体レーザーより優位性を有す る.今後,青色半導体レーザーの高出力化・高輝度化と ともに低価格化が進めば,従来の近赤外線半導体レー ザーが青色半導体レーザーに置き換わる日が近づく.

Fig. 11 簡易 3D プリンターでの純銅積層造形物

まとめ

本報では、純銅に対する光の吸収率は波長が 500nm 以下になると急激に増加し、400nm 帯域の青色半導体 レーザーは純銅の加工に適していることを示すととも に、青色半導体レーザーの高出力化・高輝度化および その加工事例など、最新の青色半導体レーザーの開発 状況について紹介した.青色半導体レーザーの出力が 1kW に達し、さらなる高出力化・高輝度化を進めてい けば、従来は難しかった純銅厚板の溶接や純銅の高速 3D プリンティング等新たな加工技術開発・加工事例が 増えていくと思われる.

謝辞

本研究を実施するにあたり日亜化学工業株式会社 飛 鳥慶太氏,岡内茂樹氏にご協力いただきましたことに 感謝いたします.

本研究の一部は、内閣府戦略的イノベーション創造プ ログラム (SIP) 革新的設計生産技術「高付加価値設計・ 製造を実現するレーザーコーティング技術の研究開発」 および国立研究開発法人新エネルギー・産業技術総合開 発機構(NEDO)「高輝度・高効率次世代レーザー技術 開発」の支援を受けて行われました.

参考文献

- Kano, M., Suzuki, K., Matsuyama, H., Sato, S., Yamaguchi, M., Ninomiya, R., Nakahara, Y., 2000, "New Copper Alloy Powder for Laser-Clad Valve Seat Used in Aluminum Cylinder Heads," SAE Technical Paper 2000-01-0396.
- 2) Kawasaki, M., Takase, K., Kato, S., Nakagawa, M., Mori, K., Nemoto, M., Takagi, S., Sugimoto, H., 1992, "Development of Engine Valve Seats Directly Deposited onto Aluminum Cylinder Head by Laser Cladding Process," SAE Technical Paper 920571.
- 3) Nakaaze, T., Tsukamoto, M., Sato, Y., Funada, Y., Tnigawa, D., Sengoku, M., Asano, K., Abe, N., 2016. "Development of 100W blue direct diode laser system for cladding of copper," Proc. of ICALEO'16, #508.
- 4) Sengoku, M., Tsukamoto, M., Asano, K., Higashino, R., Sato, Y., Funada, Y., Yoshida, M., Abe, N., 2017, "Experimental Investigation on Temperature Distribution of Molten Pool for Copper with Blue Direct Diode Laser Cladding", ICALEO2017 Technical Conference and digest Program, p119.
- 5) Higashino, R., Tsukamoto, M., Sato.Y., Abe, N., Asano. K., Funada, Y., Yoshida, M., Abe, N., 2017, "Effect of Laser Wavelength from Blue to IR on Pure Copper Film Formation by Laser Cladding", ICALEO2017 Technical Conference and digest Program, p116.
- Asano,K., Sechi,Y., Sengoku,M., Masuno,S., Hara,T., Yoshida,M., Higashino,R., Sato,Y., Tsukamoto, M., 2018, "Laser metal deposition of pure copper on stainless steel with blue and IR diode lasers," Optics and Laser Technology Optics and Laser Technology 107, pp291–296
- 7) Higashino. R., Tsukamoto. M., Sato. Y., Abe, N., Shobu, T., Funada. Y, Yanashita.Y., Sakon,Y., Sengoku, M., Yoshida, M., 2018, "In-situ x-ray observation of molten pool dynamics while laser cladding with blue direct diode laser," Proc. of SPIE. PHOTONICS WEST.
- Shibata.T, Tsukamoto.M, Sato.Y, 2019, "Effect of input energy on densification for pure copper fabricated by SLM with blue diode laser," Proc. of SPIE. PHOTONICS WEST.
- 9) レーザ学会, "レーザハンドブック" 第2版 オーム社 p830
- Engler, S., Reiner R., Reinhart P.,2011, "Process studies on laser welding of copper with brilliant green and infrared lasers," Physics Procedia 12, pp.339-346.
- Steen, W.M. & Mazumder, J., 2010 "Laser Material Processing," Springer, p90.
- 12) 浅野孝平,塚本雅裕,舟田義則,左今佑,森本健斗,佐藤雄二, 升野振一郎,原隆裕,西川宏,"金属の精密クラッディング

のためのマルチレーザービーム照射法の開発," The Review of Laser Engineering, Vol.46, No.10 pp.604-613

- 13) Asano, K. Tsukamoto, M. Funada, Y. Sakon, Y. Abe, N. Sato, S. Sengoku, M. Yoshida, M., 2018, "Copper film formation on metal surfaces with 100W blue direct diode laser system," Journal of Laser Applications 30, 032602.
- 14) Sato,Y., Tsukamoto, M., Shobu, T., Funada,Y., Yamashita,Y., Hara, T., Sengoku, M., Sakon, Y., Ohkubo, T., Yoshida, M., Abe, N., 2019, "In situ X-ray observations of pure-copper layer formation with blue direct diode lasers," Applied Surface Science 480, pp.861-867.

著者

塚本 雅裕

つかもと まさひろ

大阪大学接合科学研究所 接合プロセス研究部門レーザプロセス学分野 教授

<略歴>

1994年大阪大学大学院工学研究科,博士後期課程修了 博士(工学) 同年4月より日本学術振興会特別研究員 同年11月より 大阪大学溶接工学研究所(現接合科学研究所)助手 1996年~1998年日本学術振興会海外特別研究員,米国ローレンスリバモア国立研究所客員研究員 2006年8月より大阪大学接合科学研究所講師 2012年2月より大阪大学接合科学研究所准教授 2017年4月より大阪大学接合科学研究所教授

内閣府戦略的イノベーション創造プログラム (SIP) 革新的設計生産技術「高付加価値設計・製造を実現するレーザーコー ティング技術の研究開発 (2014 年度-2018 年度)」研究開発責任者 (プロジェクトリーダー)を務める. 現在, NEDO プロジェクト「高輝度・高効率次世代レーザー技術開発 (2016 年度-2020 年度)」にて高輝度青色半導 体レーザー光源技術開発を推進中.

【学会活動】

レーザプラットフォーム協議会会長,レーザ加工学会理事および編集委員長,レーザー学会上級会員,溶接学会高エネ ルギービーム加工研究委員会委員長,スマートプロセス学会理事および編集委員会委員,応用物理学会員.

受賞

表彰年月日	表彰名称	表彰主催団体名
2004年 5月28日	業績賞・進捗賞	(一社)レーザー学会
2019年 5月31日	業績賞(論文賞)	(一社)レーザー学会

以下略