環境対応車向け統合熱マネ用小型・高性能 ラジエータの開発*

Development of a Compact and High-Performance Radiator for Environmentally-Friendly Cars

浦濱 敬史 Takashi URAHAMA 杉戸 肇 Hajime SUGITO 赤木 翔太 Shota AKAGI 宮野 良和 Yoshikazu MIYANO

To comply with increasing environmental and fuel efficiency regulations, low-temperature radiators are required to use for thermal management of environmentally-friendly cars. As one of the low-temperature radiators, we developed a supplementary radiator installed in the front of the wheel-well which achieves the compact, high performance, and durability requirements by use of an inner-fin tube. The purpose of this paper is to report our design approach and product specifications of the supplementary radiator.

Key words :

Heat, Fluid, Radiator, Engine cooling, Low temperature, Inner-fin tube, Chipping

1. まえがき

環境や燃費に対する規制強化に伴い,自動車業界で は環境対応車(過給エンジン車,HEV,EV,FCV等) の開発が急速に進んでいる.この環境対応車に求めら れる総合熱マネジメントでは,低水温回路で使用され る低水温(以下,LT)ラジエータが成立の大きな鍵と なる.低水温回路は,水冷インタークーラ(以下,水 冷 CAC)やインバータ,モータージェネレータ等を 冷却するための新たな冷却回路で,従来のエンジン冷 却用回路よりも水温が低くなる.そのため現在デンソ ーでは,車両の総合熱マネ成立に不可欠で今後の急速 な需要拡大が見込まれる,LTラジエータの開発に取 り組んでいる.

環境対応車の一つとして重要な過給エンジン車で

は、レスポンス等で優れる水冷 CAC 式過給エンジンの採用が増加している¹⁾. この水冷式では従来のエンジン冷却用(以下,HT)ラジエータに加え、水冷 CAC 冷却用のLT ラジエータが必要となる. これまで デンソーでは小型~中型車を対象に、従来のフロント エンド(以下,F/E)に搭載される Full-Face タイプと Multi タイプ(エンジン冷却用回路と低水温回路の2 系統複合ラジエータ)のLT ラジエータを開発してき た(Fig. 1).

しかし近年,LT ラジエータのニーズは,更なる燃 費規制強化への対応や高排気量エンジンの小型化と高 出力化の両立から,大型車や高性能車にまで急速に拡 大してきた.要求冷却性能が高い大型車・高性能車で は,F/E 搭載のLT ラジエータのみでは性能が不足し てしまうため,タイヤハウス前に搭載できる追加の性

^{* (}公社) 自動車技術会の了承を得て、「2018 年春季学術講演会講演予稿集(No13-18 P1 ~文献番号 20185059)」より一部加筆して転載

能補助ラジエータが必要となる.タイヤハウス前搭載 には,限られたスペースでの性能確保と最前面搭載に 対する耐チッピング性(耐飛び石性)が求められる.

本稿では、インナフィン(以下、I/F)チューブの使 用で、小型・高性能・高品質を実現するコア幅 48mm のLT ラジエータを開発したので、その設計手法と製 品仕様を報告する.

Fig. 1 Lineup of LT Radiators and Installation Locations

2. 開発の課題

タイヤハウス前搭載では,従来の F/E 搭載に対して, 以下 2 つの点で異なる.

1つ目は搭載スペースの縮小である. これによりラ ジエータの放熱部の前面面積(コアサイズ)が縮小さ れるが、コアサイズ当たりの要求性能は F/E 搭載ラジ エータよりも高くなるため、要求性能確保には小型・ 高性能化が求められる. 具体的なコアサイズは、F/E 搭載が(500~700)×(350~550)mmに対し、タイ ヤハウス前搭載が(100~400)×(100~300)mmと なる.

2つ目は搭載位置の変化である. 従来の F/E 搭載ラ ジエータは通常コンデンサの後方に配置されるが、タ イヤハウス前搭載ラジエータは最前面となるため、従 来ラジエータでは検討不要であった耐チッピング性が 求められる. ラジエータではチッピングによるチュー ブの穴あきが冷却水洩れとなり、走行不能になる恐れ がある. そのため、耐チッピング性の理論的な設計手 法確立が重要な課題と考えた.

上記2つの課題に対する開発の詳細(①小型・高性 能コア仕様の確立,②耐チッピング性の設計手法確立) について,以下述べる.

3. 小型・高性能コア仕様の確立

3.1 使用環境と高性能化の考え方

ラジエータはチューブとアウターフィン(以下, O/ F)で構成されるコア部にて,高温の冷却水と低温の 空気を熱交換させる製品である(Fig. 2). ラジエータ の放熱性能は式(1),(2)で表され,性能向上には空気 側および水側の熱抵抗を低下させる必要がある.

$$Q = K_a \cdot F_a(T_w - T_a) \tag{1}$$

$\frac{1}{K_a \cdot F_a} = R_a$	$+R_{w} = \frac{1}{\alpha_{a} \cdot F_{a}} + \frac{1}{\alpha_{w} \cdot F_{w}}$	(2)
Q	:放熱性能 [kW]	
K_a	:空気側熱通過率 [kW/m²K]	
T_{w_r} T_a	:温度 [°C] (w:水側,a:空気側)	
R_{w_r} R_a	: 熱抵抗 [K/kW]	
$\alpha_{w,} \alpha_{a}$:熱伝達率 [kW/m ² K]	
F_{w_i} F_a	: 伝熱面積 [m ²]	

従来の F/E 搭載 HT ラジエータでは設計点(最も性 能が要求される条件)で流量が 100L/min を超えるが, LT ラジエータでは小型の電動式 W/P が使用され 10L/ min 程度の低流量環境となる.とくに今回の補助 LT ラジエータでは最大でも 5L/min 程度の極めて低い流 量条件となる.一方,空気側の風速は同等(最高車速 時で約 6m/s)である.

上述の使用条件を踏まえ,空気側と水側の熱抵抗比 を比較した (Table 1).前提仕様は,F/E 搭載 HT ラ ジエータはコアサイズ 650 × 400mm で流量 100L/ min,タイヤハウス前搭載 LT ラジエータは 200 × 130mm で 4L/min とした.また風速は最高速想定で 6m/sとした.高流量の従来 HT ラジエータでは,水 側の熱抵抗比が低く空気側の熱抵抗比が高いため,高 性能化には空気側の改良,すなわち O/F のルーバ改良 で空気側の熱伝達率 α_a を限界まで向上させてきた²⁾. 一方,低流量の LT ラジエータでは従来 HT ラジエー タに対して水側の熱抵抗比が増加 (20 → 45%)してい る.そこで,高性能化には水側の性能改良,すなわち 水側の熱伝達率 α_w と伝熱面積 F_w の向上が効果的であ ると考え,これらを増加できるチューブを検討した. 次節で高性能コア仕様の詳細を述べる. 信頼の確立

	Air-side	Coolant-side
HT Radiator (Front-end)	80%	20%
LT Radiator (Wheel-well)	55%	45%

Table 1 Comparison of the Thermal Resistance Ratios

3.2 小型・高性能コアの設計

水側性能を改良するチューブとして,従来 HT ラジ エータではディンプルチューブが採用されている.こ れはチューブ内部に設けたディンプル(突起)によっ て冷却水の流れを攪乱させ,熱伝達を促進させる技術 である.しかし,タイヤハウス前搭載 LT ラジエータ の使用域は,ディンプル効果が出るレイノルズ数(Re) 域外の 500 以下と低いため,α_wの向上が期待できな い.そこで F_wの増大に着目し,目詰まり性の限界ま で伝熱面積を増大させたストレートタイプの I/F チュ ーブを採用した.

一方, O/Fは, 空気側の環境(温度や耐食性)がF/
 E 搭載と同等であるため, 従来 HT ラジエータの技術
 (材料やフィン高さ等)²⁾を活用したコルゲートルーバ
 タイプとした.

3.3 性能検討結果とコア仕様の確立

コア幅に対する冷却性能の検討結果を Fig. 3 に示 す.縦軸の冷却性能は,通風抵抗の違いを考慮したシ ステムのマッチング風速で算出している.ディンプル チューブを使用した従来ラジエータ仕様では車両の要 求性能(縦軸の100%)を満足できないが,I/F チュ ーブでは満足できることがわかる.今回,タイヤハウ ス前の搭載性や事業性も踏まえ,デンソー既存製品で ある水冷 CAC の 48mm 幅 I/F チューブを採用した. これにより,要求性能比 +4% を実現するコア仕様を 確立した.

Fig. 3 Performance Results and Core Specification

4. 耐チッピング性設計手法の確立

4.1 飛び石環境の把握と目標設定4.1.1 飛び石環境の把握

チッピングとは、車両2台が近接して走行する場合 に、前者のタイヤで跳ね上げられて浮いた石に、高速 走行する後車が衝突することで起こる.この時、石が チューブに衝突する.ことで、チューブが破壊し洩れ に至る (Fig. 4).今回、チューブ耐力の目標設定には、 飛び石がチューブに衝突する環境を把握することが重 要と考え、モデル化を実施した.

Fig. 5 に示すように,石の質量 m,後車の車速 Vと すると,飛び石の衝突エネルギ (運動エネルギ) Eは 式 (3) で表される.この衝突エネルギがチューブの破 壊につながるため,目標のチューブ耐力 E,はチューブ が破壊に至る限界の衝突エネルギと置き換えることが できる.ここで,石のサイズを相当直径 d,密度を ρ とおくと,最終的に E,は式 (4) で表される.したがっ て,チューブ耐力目標の設定には,石の条件 (d, ρ) と 車速 Vの明確化が必要となる.

$$E = \frac{1}{2}mV^2 \tag{3}$$

$$E_t = \frac{1}{2}mV^2 = \frac{1}{2}\rho \frac{\pi d^3}{6}V^2$$
(4)

Fig. 4 Stone-Impact Environment

Fig. 5 Modeling the Stone-Impact Environment

4.1.2 チューブ耐力の目標設定

(1) 石の条件

路上の石(硬物)は以下2つである.1つ目は、も ともと路上にあるもの、すなわち道路の材料であり、 道路の種類や舗装方法が影響する.2つ目は、後で路 上に追加されたもの、すなわち散布物であり、凍結防 止剤が挙げられる.散布物には予測が困難な落下物や 飛来物は考慮しない.

まず道路の種類について検討した.式(4)より衝突 エネルギには車速Vが2乗で効くため、高速走行でき る道路の選定が重要と考え、舗装道(一般道、高速道 路等)を選定した.参考までに、その他の道路として は農道、林道、里道等が挙げられるが、これらの道路 では車両2台が近接して高速走行する状態は、発生す る可能性が低く今回の検討からは除外した.

次に舗装道の舗装方法について検討した. 舗装方法 はコンクリート舗装とアスファルト舗装の2種類があ る. コンクリート舗装は90%以上が粒径5mm以下の 石で構成されている. 一方アスファルト舗装は, Fig. 6 に示すような層状の構成³⁾となっており, チッピング に影響する石は舗装の表面に位置する表層や基層のア スファルト混合物と考えた. このアスファルト混合物⁴⁾ の中で最も粒径が大きいものが粗骨材で, 平均粒径が 7.7mm, 比重が2.7 (砂岩, 石灰岩, 花崗岩等) である. 最後に凍結防止剤である.凍結防止剤(固体)には NaCl や CaCl2,砂利等があるが,いずれも粗骨材よ りは径 (-7.0mm),比重 (-2.2)ともに小さい⁵⁾.

以上より, 最も粒径が大きな粗骨材を石の条件 (*d*=7.7mm, *ρ*=2700kg/m³)に設定した.

Fig. 6 Construction of Asphalt Mixture

(2) 車速

各地域の高速道路の制限速度から最も高いものを車 速条件として設定した. Table 2 に各地域の制限速度⁶ を示す. 今回,制限速度超えは考慮しない. また,欧 州のアウトバーンでは速度無制限区間が一部あるが, 130km/h 以上の速度で車両 2 台が近接して走行する状 態は起こりにくいと考えた. 以上より,車速の条件は 130km/h と設定した.

Table 2 Speed limit

Region	Speed limit	
Japan	100km/h	
Europe	~130km/h	
North America	~129km/h(80MPH)	

(3) チューブ耐力目標

式 (4) と石の条件 (d=7.7mm, ρ =2700kg/m³) および 車速 (V=130km/h) より,安全率 1.5 を考慮して,チュ ーブ耐力目標を E_t = 0.63J に設定した.

4.2 車両搭載環境を踏まえたチューブ耐力の明確化4.2.1 チューブ耐力の明確化の考え方

チューブ耐力の明確化には、ストレスとストレング スの明確化が重要と考えた.ストレスとして、車両搭 載環境でのコアへの石の当たり方に着眼した.またス トレングスとしては,飛び石の衝突に対する I/F チュー ブの構造や変形に着眼した.以下,順に詳細を述べる.

4.2.2 車両搭載環境での石の当たり方(ストレス)

Fig. 7に示すように、タイヤハウス前搭載では、ラ ジエータの前方にグリルとエアダクトが設置される. 車両の下側はアンダーカバーで覆われている.このよ うな環境では、下側からの石はアンダーカバーで防が れ、斜めから進入する石はラジエータ前方のエアダク トによって直接コアへ当たらない.したがって、チュ ーブを破壊する高エネルギの石は、コア(チューブ) に対して正面方向から直撃すると考えられる.

Fig. 7 Stone-Hitting Direction (In the Front of the Wheel Well)

4.2.3 飛び石の衝突による I/F の効果(ストレングス)

飛び石がチューブの正面から衝突する場合には,チ ューブの先端部がコアの後方側へ変形し,チューブ内 部の I/F に接触することで,チューブ先端部へ与えら れた衝撃エネルギが緩和されると考えられる.

そこで、I/F チューブの構造がチューブ耐力の向上 に効果があると着眼し、飛び石がチューブの正面から 衝突した場合に、チューブがどのように変形するか 仮説をたてた(Fig. 8). I/F が無い従来のチューブで は、正面からの衝突により、先端が潰されて大きく膨 らみ、引き裂かれるモードが考えられる。一方 I/F チ ューブでは、I/F の以下 2 つの効果によりチューブ耐 力が向上すると考えた。1 つ目の効果は、I/F がバネ 構造となりチューブ先端部の衝撃を吸収することであ る.2 つ目の効果は、I/F がチューブ内側に接合(ろ う付)されているため、チューブの変形(膨らみ)を 抑制することである.この仮説の効果を確認するため, I/Fの有無で,衝突解析を以下実施した.

Fig. 8 Tube Deformation by Stone-Hitting from the Front Direction

4.2.4 衝突解析による I/F の効果確認

現状の衝突解析技術では定量的な応力把握や亀裂を 考慮した破壊部位の特定は困難であるため,飛び石の 衝突による定性的な変形形態を確認した.衝突解析の ソルバーには LS-DYNA を使用した.衝突解析の結果 を Fig. 9 に示す.飛び石の条件は,4.1節で述べた, 径 *d* =7.7mm,密度 *p* =2700kg/m³,速度 *V* =130km/h である. I/F 無しでは、チューブが厚み方向に大きく 変形している.一方 I/F 有りでは、チューブ先端 R 部 の内壁が I/F と接触して衝撃を吸収し、チューブ厚み 方向の変形が抑制できていることが確認できた.した がって、前項で述べた仮説通り、I/F による衝撃吸収 と変形抑制の 2 つの効果が、チューブ耐力を向上させ ると考えられる.以下、実機にてチューブ耐力を検証 した.

Fig. 9 Impact Analysis Results

4.2.5 チューブ耐力の実機検証

実機検証は市場実績のあるデンソーのコンデンサで 用いられている評価方法を改良して実施した.この方 法は飛び石の衝突エネルギを錘の位置エネルギに置き 換えたものである(式(5)).コア表面に市場の石(厳 しい角形状)を模擬した鋭利なポンチを設置し, 錘を 高さ *H* からポンチへ落下させ, コアへ衝撃を与える (Fig. 10). 4.2.2 項で述べたタイヤハウス前搭載環境 での石の当たり方を踏まえ, チューブ正面方向から衝 撃を与えた.

$$E_t = MgH \tag{5}$$

チューブ落錘評価の結果, I/F 有りのチューブでは, チューブが破壊しない限界高さは H =16cm となった, 式(5)からチューブ耐力を算出した結果,チューブ耐 力は 0.78J となり,目標の 0.63J を満足することが確 認できた. Fig. 11 は H =17cm でチューブが破壊した時 の断面である.また Fig. 12 は,I/F の効果を確認する 目的で評価した,I/F 無しのチューブの結果(H =8cm で破壊)である.これらの結果より,I/F の 2つの効 果である衝撃吸収と変形抑制によって,I/F チューブ のチューブ耐力が向上したと考えられ,仮説を実証す ることができた.

また,デンソーのコンデンサの評価結果は*H* =16cm(今回の開発品と同じ)であるため,今回の理 論的設計手法は市場実績のあるコンデンサにも適用可 能であるといえる.

Fig. 10 Test Method of Weight-Drop

Fig. 11 Test Results of Tube with I/F (Development Product)

Tube cross section

Damage : H=8cm

End portion expanded and pulled

Fig. 12 Test Results of Tube without I/F

4.3 車両での適用例

式(4),(5)と前節の限界高さより,今回のI/Fチ ューブが耐えうる石のサイズと車速(衝突速度)の 関係を Fig. 13 に整理した.グラフの曲線は等チュー ブ耐力線(等衝突エネルギ線)である.このグラフ は,例えば,石のサイズが7.7mmの場合,目標の車 速130km/hに対して,本I/Fチューブが車速145km/ hまで耐えられることを示す.

実際の車両では路面環境や走行条件は一定ではない ため、石のサイズや車速の違いを考慮する必要がある. 本手法は、車両のさまざまな環境・条件での設計点に 対する耐チッピング性の検討に有用である.

Fig. 13 Vehicle Speed and Stone Size for Impact Resistance

5. むすび

フロントエンド搭載ラジエータの性能補助を目的 に、48mm幅のインナフィンチューブを採用し、タイ ヤハウス前に搭載可能な小型・高性能と耐チッピング 性を両立した低水温ラジエータを開発した. とくに,最前面搭載特有の耐チッピング性は,飛び 石環境に対する理論的アプローチからチューブ耐力の 目標値(0.63J以上)を設定し,実機検証した.さら に,本設計手法が市場実績のあるコンデンサにも適用 可能であることを示した.

本製品は2017年12月より量産を開始した. さら に, FCVやEV向け総合熱マネ用高性能LTラジエー タへも適用拡大すべく,開発に取り組んでいる.

参考文献

- Harada, M. : Water Cooled Charge Air Cooler Development, SAE Technical Paper (2016), 2016-01-0651
- 3) (社) 日本道路協会: 舗装設計施工指針(平成18年版)
- 小谷昇:アスファルト混合物の知識(改訂3版),技報堂出版株式会社(1994)
- 5) 木村恵子:凍結防止剤散布と沿道環境,国総研資料第412
 号 (2007)
- 6) AIT/FIA : Speed limits around the world, (http://www.mctc. dk/media/76070/fartgraenser_2013.pdf)

浦濱 敬史 うらはま たかし サーマルマネジメントユニット技術2部

冷却製品の要素開発に従事

杉戸 肇 すぎと はじめ サーマルマネジメントユニット技術2部 冷却製品の要素開発に従事

60

赤木 翔太 あかぎ しょうた トヨタ出向中 冷却製品の要素開発に従事

宮野 良和 みやの よしかず

サーマルマネジメントユニット技術 2 部 冷却製品の要素開発に従事